
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

1.30

1.31

1.32

1.33

1.34

1.35

1.36

1.37

1.38

1.39

Table	of	Contents
Introduction

Legal	Notice

Preface

Project	Info

Messaging	Concepts

Architecture

Using	the	Server

Using	JMS

Using	Core

Mapping	JMS	Concepts	to	the	Core	API

The	Client	Classpath

Examples

Routing	Messages	With	Wild	Cards

Understanding	the	Apache	ActiveMQ	Artemis	Wildcard	Syntax

Filter	Expressions

Persistence

Configuring	Transports

Configuration	Reload

Detecting	Dead	Connections

Detecting	Slow	Consumers

Avoiding	Network	Isolation

Resource	Manager	Configuration

Flow	Control

Guarantees	of	sends	and	commits

Message	Redelivery	and	Undelivered	Messages

Message	Expiry

Large	Messages

Paging

Queue	Attributes

Scheduled	Messages

Last-Value	Queues

Message	Grouping

Extra	Acknowledge	Modes

Management

Security

Resource	Limits

The	JMS	Bridge

Client	Reconnection	and	Session	Reattachment

Diverting	and	Splitting	Message	Flows

1

1.40

1.41

1.42

1.43

1.44

1.45

1.46

1.47

1.48

1.49

1.50

1.51

1.52

1.53

1.54

1.55

1.56

1.57

1.58

1.59

1.60

1.61

Core	Bridges

Duplicate	Message	Detection

Clusters

High	Availability	and	Failover

Graceful	Server	Shutdown

Libaio	Native	Libraries

Thread	management

Logging

REST	Interface

Embedding	Apache	ActiveMQ	Artemis

Apache	Karaf

Spring	Integration

AeroGear	Integration

VertX	Integration

CDI	Integration

Intercepting	Operations

Protocols	and	Interoperability

Tools

Maven	Plugin

Unit	Testing

Troubleshooting	and	Performance	Tuning

Configuration	Reference

2

Apache	ActiveMQ	Artemis	User	Manual
The	User	manual	is	an	in	depth	manual	on	all	aspects	of	Apache	ActiveMQ	Artemis

Introduction

3

Legal	Notice
Licensed	to	the	Apache	Software	Foundation	(ASF)	under	one	or	more	contributor	license	agreements.	See	the	NOTICE	file	distributed
with	this	work	for	additional	information	regarding	copyright	ownership.	The	ASF	licenses	this	file	to	You	under	the	Apache	License,
Version	2.0	(the	"License");	you	may	not	use	this	file	except	in	compliance	with	the	License.	You	may	obtain	a	copy	of	the	License	at

http://www.apache.org/licenses/LICENSE-2.0

Unless	required	by	applicable	law	or	agreed	to	in	writing,	software	distributed	under	the	License	is	distributed	on	an	"AS	IS"	BASIS,
WITHOUT	WARRANTIES	OR	CONDITIONS	OF	ANY	KIND,	either	express	or	implied.	See	the	License	for	the	specific	language
governing	permissions	and	limitations	under	the	License.

Legal	Notice

4

http://www.apache.org/licenses/LICENSE-2.0

Preface
What	is	Apache	ActiveMQ	Artemis?

Apache	ActiveMQ	Artemis	is	an	open	source	project	to	build	a	multi-protocol,	embeddable,	very	high	performance,	clustered,
asynchronous	messaging	system.

Apache	ActiveMQ	Artemis	is	an	example	of	Message	Oriented	Middleware	(MoM).	For	a	description	of	MoMs	and	other
messaging	concepts	please	see	the	Messaging	Concepts.

For	answers	to	more	questions	about	what	Apache	ActiveMQ	Artemis	is	and	what	it	isn't	please	visit	the	FAQs	wiki	page.

Why	use	Apache	ActiveMQ	Artemis?	Here	are	just	a	few	of	the	reasons:

100%	open	source	software.	Apache	ActiveMQ	Artemis	is	licensed	using	the	Apache	Software	License	v	2.0	to	minimise	barriers
to	adoption.

Apache	ActiveMQ	Artemis	is	designed	with	usability	in	mind.

Written	in	Java.	Runs	on	any	platform	with	a	Java	8+	runtime,	that's	everything	from	Windows	desktops	to	IBM	mainframes.

Amazing	performance.	Our	ground-breaking	high	performance	journal	provides	persistent	messaging	performance	at	rates	normally
seen	for	non-persistent	messaging,	our	non-persistent	messaging	performance	rocks	the	boat	too.

Full	feature	set.	All	the	features	you'd	expect	in	any	serious	messaging	system,	and	others	you	won't	find	anywhere	else.

Elegant,	clean-cut	design	with	minimal	third	party	dependencies.	Run	ActiveMQ	Artemis	stand-alone,	run	it	in	integrated	in	your
favourite	JEE	application	server,	or	run	it	embedded	inside	your	own	product.	It's	up	to	you.

Seamless	high	availability.	We	provide	a	HA	solution	with	automatic	client	failover	so	you	can	guarantee	zero	message	loss	or
duplication	in	event	of	server	failure.

Hugely	flexible	clustering.	Create	clusters	of	servers	that	know	how	to	load	balance	messages.	Link	geographically	distributed
clusters	over	unreliable	connections	to	form	a	global	network.	Configure	routing	of	messages	in	a	highly	flexible	way.

Preface

5

Project	Information
The	official	Apache	ActiveMQ	Artemis	project	page	is	http://activemq.apache.org/artemis/.

Software	Download

The	software	can	be	download	from	the	Download	page:http://activemq.apache.org/download.html

Project	Information

If	you	have	any	user	questions	please	use	our	user	forum

If	you	have	development	related	questions,	please	use	our	developer	forum

Pop	in	and	chat	to	us	in	our	IRC	channel

Apache	ActiveMQ	Artemis	Git	repository	is	https://github.com/apache/activemq-artemis

All	release	tags	are	available	from	https://github.com/apache/activemq-artemis/releases

And	many	thanks	to	all	our	contributors,	both	old	and	new	who	helped	create	Apache	ActiveMQ	Artemis.

Project	Info

6

http://activemq.apache.org/artemis/
http://activemq.apache.org/download.html
http://activemq.2283324.n4.nabble.com/ActiveMQ-User-f2341805.html
http://activemq.2283324.n4.nabble.com/ActiveMQ-Dev-f2368404.html
irc://irc.freenode.net:6667/apache-activemq
https://github.com/apache/activemq-artemis
https://github.com/apache/activemq-artemis/releases

Messaging	Concepts
Apache	ActiveMQ	Artemis	is	an	asynchronous	messaging	system,	an	example	of	Message	Oriented	Middleware	,	we'll	just	call	them
messaging	systems	in	the	remainder	of	this	book.

We'll	first	present	a	brief	overview	of	what	kind	of	things	messaging	systems	do,	where	they're	useful	and	the	kind	of	concepts	you'll
hear	about	in	the	messaging	world.

If	you're	already	familiar	with	what	a	messaging	system	is	and	what	it's	capable	of,	then	you	can	skip	this	chapter.

Messaging	Concepts
Messaging	systems	allow	you	to	loosely	couple	heterogeneous	systems	together,	whilst	typically	providing	reliability,	transactions	and
many	other	features.

Unlike	systems	based	on	a	Remote	Procedure	Call	(RPC)	pattern,	messaging	systems	primarily	use	an	asynchronous	message	passing
pattern	with	no	tight	relationship	between	requests	and	responses.	Most	messaging	systems	also	support	a	request-response	mode	but
this	is	not	a	primary	feature	of	messaging	systems.

Designing	systems	to	be	asynchronous	from	end-to-end	allows	you	to	really	take	advantage	of	your	hardware	resources,	minimizing	the
amount	of	threads	blocking	on	IO	operations,	and	to	use	your	network	bandwidth	to	its	full	capacity.	With	an	RPC	approach	you	have
to	wait	for	a	response	for	each	request	you	make	so	are	limited	by	the	network	round	trip	time,	or	latency	of	your	network.	With	an
asynchronous	system	you	can	pipeline	flows	of	messages	in	different	directions,	so	are	limited	by	the	network	bandwidth	not	the
latency.	This	typically	allows	you	to	create	much	higher	performance	applications.

Messaging	systems	decouple	the	senders	of	messages	from	the	consumers	of	messages.	The	senders	and	consumers	of	messages	are
completely	independent	and	know	nothing	of	each	other.	This	allows	you	to	create	flexible,	loosely	coupled	systems.

Often,	large	enterprises	use	a	messaging	system	to	implement	a	message	bus	which	loosely	couples	heterogeneous	systems	together.
Message	buses	often	form	the	core	of	an	Enterprise	Service	Bus.	(ESB).	Using	a	message	bus	to	de-couple	disparate	systems	can	allow
the	system	to	grow	and	adapt	more	easily.	It	also	allows	more	flexibility	to	add	new	systems	or	retire	old	ones	since	they	don't	have
brittle	dependencies	on	each	other.

Messaging	styles

Messaging	systems	normally	support	two	main	styles	of	asynchronous	messaging:	message	queue	messaging	(also	known	as	point-to-
point	messaging)	and	publish	subscribe	messaging.	We'll	summarise	them	briefly	here:

The	Message	Queue	Pattern

With	this	type	of	messaging	you	send	a	message	to	a	queue.	The	message	is	then	typically	persisted	to	provide	a	guarantee	of	delivery,
then	some	time	later	the	messaging	system	delivers	the	message	to	a	consumer.	The	consumer	then	processes	the	message	and	when	it	is
done,	it	acknowledges	the	message.	Once	the	message	is	acknowledged	it	disappears	from	the	queue	and	is	not	available	to	be	delivered
again.	If	the	system	crashes	before	the	messaging	server	receives	an	acknowledgement	from	the	consumer,	then	on	recovery,	the	message
will	be	available	to	be	delivered	to	a	consumer	again.

With	point-to-point	messaging,	there	can	be	many	consumers	on	the	queue	but	a	particular	message	will	only	ever	be	consumed	by	a
maximum	of	one	of	them.	Senders	(also	known	as	producers)	to	the	queue	are	completely	decoupled	from	receivers	(also	known	as
consumers)	of	the	queue	-	they	do	not	know	of	each	other's	existence.

A	classic	example	of	point	to	point	messaging	would	be	an	order	queue	in	a	company's	book	ordering	system.	Each	order	is	represented
as	a	message	which	is	sent	to	the	order	queue.	Let's	imagine	there	are	many	front	end	ordering	systems	which	send	orders	to	the	order
queue.	When	a	message	arrives	on	the	queue	it	is	persisted	-	this	ensures	that	if	the	server	crashes	the	order	is	not	lost.	Let's	also	imagine
there	are	many	consumers	on	the	order	queue	-	each	representing	an	instance	of	an	order	processing	component	-	these	can	be	on

Messaging	Concepts

7

http://en.wikipedia.org/wiki/Message_oriented_middleware
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Enterprise_service_bus
http://en.wikipedia.org/wiki/Message_queue
http://en.wikipedia.org/wiki/Publish_subscribe

different	physical	machines	but	consuming	from	the	same	queue.	The	messaging	system	delivers	each	message	to	one	and	only	one	of
the	ordering	processing	components.	Different	messages	can	be	processed	by	different	order	processors,	but	a	single	order	is	only
processed	by	one	order	processor	-	this	ensures	orders	aren't	processed	twice.

As	an	order	processor	receives	a	message,	it	fulfills	the	order,	sends	order	information	to	the	warehouse	system	and	then	updates	the
order	database	with	the	order	details.	Once	it's	done	that	it	acknowledges	the	message	to	tell	the	server	that	the	order	has	been	processed
and	can	be	forgotten	about.	Often	the	send	to	the	warehouse	system,	update	in	database	and	acknowledgement	will	be	completed	in	a
single	transaction	to	ensure	ACID	properties.

The	Publish-Subscribe	Pattern

With	publish-subscribe	messaging	many	senders	can	send	messages	to	an	entity	on	the	server,	often	called	a	topic	(e.g.	in	the	JMS
world).

There	can	be	many	subscriptions	on	a	topic,	a	subscription	is	just	another	word	for	a	consumer	of	a	topic.	Each	subscription	receives	a
copy	of	each	message	sent	to	the	topic.	This	differs	from	the	message	queue	pattern	where	each	message	is	only	consumed	by	a	single
consumer.

Subscriptions	can	optionally	be	durable	which	means	they	retain	a	copy	of	each	message	sent	to	the	topic	until	the	subscriber	consumes
them	-	even	if	the	server	crashes	or	is	restarted	in	between.	Non-durable	subscriptions	only	last	a	maximum	of	the	lifetime	of	the
connection	that	created	them.

An	example	of	publish-subscribe	messaging	would	be	a	news	feed.	As	news	articles	are	created	by	different	editors	around	the	world
they	are	sent	to	a	news	feed	topic.	There	are	many	subscribers	around	the	world	who	are	interested	in	receiving	news	items	-	each	one
creates	a	subscription	and	the	messaging	system	ensures	that	a	copy	of	each	news	message	is	delivered	to	each	subscription.

Delivery	guarantees
A	key	feature	of	most	messaging	systems	is	reliable	messaging.	With	reliable	messaging	the	server	gives	a	guarantee	that	the	message
will	be	delivered	once	and	only	once	to	each	consumer	of	a	queue	or	each	durable	subscription	of	a	topic,	even	in	the	event	of	system
failure.	This	is	crucial	for	many	businesses;	e.g.	you	don't	want	your	orders	fulfilled	more	than	once	or	any	of	your	orders	to	be	lost.

In	other	cases	you	may	not	care	about	a	once	and	only	once	delivery	guarantee	and	are	happy	to	cope	with	duplicate	deliveries	or	lost
messages	-	an	example	of	this	might	be	transient	stock	price	updates	-	which	are	quickly	superseded	by	the	next	update	on	the	same
stock.	The	messaging	system	allows	you	to	configure	which	delivery	guarantees	you	require.

Transactions

Messaging	systems	typically	support	the	sending	and	acknowledgement	of	multiple	messages	in	a	single	local	transaction.	Apache
ActiveMQ	Artemis	also	supports	the	sending	and	acknowledgement	of	message	as	part	of	a	large	global	transaction	-	using	the	Java
mapping	of	XA:	JTA.

Durability

Messages	are	either	durable	or	non	durable.	Durable	messages	will	be	persisted	in	permanent	storage	and	will	survive	server	failure	or
restart.	Non	durable	messages	will	not	survive	server	failure	or	restart.	Examples	of	durable	messages	might	be	orders	or	trades,	where
they	cannot	be	lost.	An	example	of	a	non	durable	message	might	be	a	stock	price	update	which	is	transitory	and	doesn't	need	to	survive
a	restart.

Messaging	APIs	and	protocols

How	do	client	applications	interact	with	messaging	systems	in	order	to	send	and	consume	messages?

Messaging	Concepts

8

http://en.wikipedia.org/wiki/ACID

Several	messaging	systems	provide	their	own	proprietary	APIs	with	which	the	client	communicates	with	the	messaging	system.

There	are	also	some	standard	ways	of	operating	with	messaging	systems	and	some	emerging	standards	in	this	space.

Let's	take	a	brief	look	at	these:

Java	Message	Service	(JMS)

JMS	is	part	of	Oracle's	JEE	specification.	It's	a	Java	API	that	encapsulates	both	message	queue	and	publish-subscribe	messaging
patterns.	JMS	is	a	lowest	common	denominator	specification	-	i.e.	it	was	created	to	encapsulate	common	functionality	of	the	already
existing	messaging	systems	that	were	available	at	the	time	of	its	creation.

JMS	is	a	very	popular	API	and	is	implemented	by	most	messaging	systems.	JMS	is	only	available	to	clients	running	Java.

JMS	does	not	define	a	standard	wire	format	-	it	only	defines	a	programmatic	API	so	JMS	clients	and	servers	from	different	vendors
cannot	directly	interoperate	since	each	will	use	the	vendor's	own	internal	wire	protocol.

Apache	ActiveMQ	Artemis	provides	a	fully	compliant	JMS	1.1	and	JMS	2.0	API.

System	specific	APIs

Many	systems	provide	their	own	programmatic	API	for	which	to	interact	with	the	messaging	system.	The	advantage	of	this	it	allows
the	full	set	of	system	functionality	to	be	exposed	to	the	client	application.	API's	like	JMS	are	not	normally	rich	enough	to	expose	all	the
extra	features	that	most	messaging	systems	provide.

Apache	ActiveMQ	Artemis	provides	its	own	core	client	API	for	clients	to	use	if	they	wish	to	have	access	to	functionality	over	and
above	that	accessible	via	the	JMS	API.

RESTful	API

REST	approaches	to	messaging	are	showing	a	lot	interest	recently.

It	seems	plausible	that	API	standards	for	cloud	computing	may	converge	on	a	REST	style	set	of	interfaces	and	consequently	a	REST
messaging	approach	is	a	very	strong	contender	for	becoming	the	de-facto	method	for	messaging	interoperability.

With	a	REST	approach	messaging	resources	are	manipulated	as	resources	defined	by	a	URI	and	typically	using	a	simple	set	of
operations	on	those	resources,	e.g.	PUT,	POST,	GET	etc.	REST	approaches	to	messaging	often	use	HTTP	as	their	underlying	protocol.

The	advantage	of	a	REST	approach	with	HTTP	is	in	its	simplicity	and	the	fact	the	internet	is	already	tuned	to	deal	with	HTTP
optimally.

Please	see	Rest	Interface	for	using	Apache	ActiveMQ	Artemis's	RESTful	interface.

STOMP

Stomp	is	a	very	simple	text	protocol	for	interoperating	with	messaging	systems.	It	defines	a	wire	format,	so	theoretically	any	Stomp
client	can	work	with	any	messaging	system	that	supports	Stomp.	Stomp	clients	are	available	in	many	different	programming	languages.

Please	see	Stomp	for	using	STOMP	with	Apache	ActiveMQ	Artemis.

AMQP

AMQP	is	a	specification	for	interoperable	messaging.	It	also	defines	a	wire	format,	so	any	AMQP	client	can	work	with	any	messaging
system	that	supports	AMQP.	AMQP	clients	are	available	in	many	different	programming	languages.

Apache	ActiveMQ	Artemis	implements	the	AMQP	1.0	specification.	Any	client	that	supports	the	1.0	specification	will	be	able	to
interact	with	Apache	ActiveMQ	Artemis.

High	Availability

Messaging	Concepts

9

http://en.wikipedia.org/wiki/Java_Message_Service
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://stomp.github.io/
http://en.wikipedia.org/wiki/AMQP
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp

High	Availability	(HA)	means	that	the	system	should	remain	operational	after	failure	of	one	or	more	of	the	servers.	The	degree	of
support	for	HA	varies	between	various	messaging	systems.

Apache	ActiveMQ	Artemis	provides	automatic	failover	where	your	sessions	are	automatically	reconnected	to	the	backup	server	on
event	of	live	server	failure.

For	more	information	on	HA,	please	see	High	Availability	and	Failover.

Clusters
Many	messaging	systems	allow	you	to	create	groups	of	messaging	servers	called	clusters.	Clusters	allow	the	load	of	sending	and
consuming	messages	to	be	spread	over	many	servers.	This	allows	your	system	to	scale	horizontally	by	adding	new	servers	to	the
cluster.

Degrees	of	support	for	clusters	varies	between	messaging	systems,	with	some	systems	having	fairly	basic	clusters	with	the	cluster
members	being	hardly	aware	of	each	other.

Apache	ActiveMQ	Artemis	provides	very	configurable	state-of-the-art	clustering	model	where	messages	can	be	intelligently	load
balanced	between	the	servers	in	the	cluster,	according	to	the	number	of	consumers	on	each	node,	and	whether	they	are	ready	for
messages.

Apache	ActiveMQ	Artemis	also	has	the	ability	to	automatically	redistribute	messages	between	nodes	of	a	cluster	to	prevent	starvation
on	any	particular	node.

For	full	details	on	clustering,	please	see	Clusters.

Bridges	and	routing

Some	messaging	systems	allow	isolated	clusters	or	single	nodes	to	be	bridged	together,	typically	over	unreliable	connections	like	a	wide
area	network	(WAN),	or	the	internet.

A	bridge	normally	consumes	from	a	queue	on	one	server	and	forwards	messages	to	another	queue	on	a	different	server.	Bridges	cope	with
unreliable	connections,	automatically	reconnecting	when	the	connections	becomes	available	again.

Apache	ActiveMQ	Artemis	bridges	can	be	configured	with	filter	expressions	to	only	forward	certain	messages,	and	transformation	can
also	be	hooked	in.

Apache	ActiveMQ	Artemis	also	allows	routing	between	queues	to	be	configured	in	server	side	configuration.	This	allows	complex
routing	networks	to	be	set	up	forwarding	or	copying	messages	from	one	destination	to	another,	forming	a	global	network	of
interconnected	brokers.

For	more	information	please	see	Core	Bridges	and	Diverting	and	Splitting	Message	Flows.

Messaging	Concepts

10

Architecture
In	this	section	we	will	give	an	overview	of	the	Apache	ActiveMQ	Artemis	high	level	architecture.

Core	Architecture

Apache	ActiveMQ	Artemis	core	is	designed	simply	as	set	of	Plain	Old	Java	Objects	(POJOs)	-	we	hope	you	like	its	clean-cut	design.

We've	also	designed	it	to	have	as	few	dependencies	on	external	jars	as	possible.	In	fact,	Apache	ActiveMQ	Artemis	core	has	only	one	jar
dependency,	netty.jar,	other	than	the	standard	JDK	classes!	This	is	because	we	use	some	of	the	netty	buffer	classes	internally.

This	allows	Apache	ActiveMQ	Artemis	to	be	easily	embedded	in	your	own	project,	or	instantiated	in	any	dependency	injection
framework	such	as	Spring	or	Google	Guice.

Each	Apache	ActiveMQ	Artemis	server	has	its	own	ultra	high	performance	persistent	journal,	which	it	uses	for	message	and	other
persistence.

Using	a	high	performance	journal	allows	outrageous	persistence	message	performance,	something	not	achievable	when	using	a	relational
database	for	persistence.

Apache	ActiveMQ	Artemis	clients,	potentially	on	different	physical	machines	interact	with	the	Apache	ActiveMQ	Artemis	server.
Apache	ActiveMQ	Artemis	currently	provides	two	APIs	for	messaging	at	the	client	side:

1.	 Core	client	API.	This	is	a	simple	intuitive	Java	API	that	allows	the	full	set	of	messaging	functionality	without	some	of	the
complexities	of	JMS.

2.	 JMS	client	API.	The	standard	JMS	API	is	available	at	the	client	side.

Apache	ActiveMQ	Artemis	also	provides	different	protocol	implementations	on	the	server	so	you	can	use	respective	clients	for	these
protocols:

1.	 Stomp
2.	 OpenWire
3.	 AMQP

JMS	semantics	are	implemented	by	a	JMS	facade	layer	on	the	client	side.

The	Apache	ActiveMQ	Artemis	server	does	not	speak	JMS	and	in	fact	does	not	know	anything	about	JMS,	it	is	a	protocol	agnostic
messaging	server	designed	to	be	used	with	multiple	different	protocols.

When	a	user	uses	the	JMS	API	on	the	client	side,	all	JMS	interactions	are	translated	into	operations	on	the	Apache	ActiveMQ	Artemis
core	client	API	before	being	transferred	over	the	wire	using	the	Apache	ActiveMQ	Artemis	wire	format.

The	server	always	just	deals	with	core	API	interactions.

A	schematic	illustrating	this	relationship	is	shown	in	figure	3.1	below:

Architecture

11

Figure	3.1	shows	two	user	applications	interacting	with	an	Apache	ActiveMQ	Artemis	server.	User	Application	1	is	using	the	JMS
API,	while	User	Application	2	is	using	the	core	client	API	directly.

You	can	see	from	the	diagram	that	the	JMS	API	is	implemented	by	a	thin	facade	layer	on	the	client	side.

Architecture

12

Apache	ActiveMQ	Artemis	embedded	in	your	own	application

Apache	ActiveMQ	Artemis	core	is	designed	as	a	set	of	simple	POJOs	so	if	you	have	an	application	that	requires	messaging
functionality	internally	but	you	don't	want	to	expose	that	as	an	Apache	ActiveMQ	Artemis	server	you	can	directly	instantiate	and
embed	Apache	ActiveMQ	Artemis	servers	in	your	own	application.

For	more	information	on	embedding	Apache	ActiveMQ	Artemis,	see	Embedding	Apache	ActiveMQ	Artemis.

Apache	ActiveMQ	Artemis	integrated	with	a	Java	EE	application
server
Apache	ActiveMQ	Artemis	provides	its	own	fully	functional	Java	Connector	Architecture	(JCA)	adaptor	which	enables	it	to	be
integrated	easily	into	any	Java	EE	compliant	application	server	or	servlet	engine.

Java	EE	application	servers	provide	Message	Driven	Beans	(MDBs),	which	are	a	special	type	of	Enterprise	Java	Beans	(EJBs)	that	can
process	messages	from	sources	such	as	JMS	systems	or	mail	systems.

Probably	the	most	common	use	of	an	MDB	is	to	consume	messages	from	a	JMS	messaging	system.

According	to	the	Java	EE	specification,	a	Java	EE	application	server	uses	a	JCA	adapter	to	integrate	with	a	JMS	messaging	system	so	it
can	consume	messages	for	MDBs.

However,	the	JCA	adapter	is	not	only	used	by	the	Java	EE	application	server	for	consuming	messages	via	MDBs,	it	is	also	used	when
sending	message	to	the	JMS	messaging	system	e.g.	from	inside	an	EJB	or	servlet.

When	integrating	with	a	JMS	messaging	system	from	inside	a	Java	EE	application	server	it	is	always	recommended	that	this	is	done	via
a	JCA	adaptor.	In	fact,	communicating	with	a	JMS	messaging	system	directly,	without	using	JCA	would	be	illegal	according	to	the	Java
EE	specification.

The	application	server's	JCA	service	provides	extra	functionality	such	as	connection	pooling	and	automatic	transaction	enlistment,
which	are	desirable	when	using	messaging,	say,	from	inside	an	EJB.	It	is	possible	to	talk	to	a	JMS	messaging	system	directly	from	an
EJB,	MDB	or	servlet	without	going	through	a	JCA	adapter,	but	this	is	not	recommended	since	you	will	not	be	able	to	take	advantage	of
the	JCA	features,	such	as	caching	of	JMS	sessions,	which	can	result	in	poor	performance.

Figure	3.2	below	shows	a	Java	EE	application	server	integrating	with	a	Apache	ActiveMQ	Artemis	server	via	the	Apache	ActiveMQ
Artemis	JCA	adaptor.	Note	that	all	communication	between	EJB	sessions	or	entity	beans	and	Message	Driven	beans	go	through	the
adaptor	and	not	directly	to	Apache	ActiveMQ	Artemis.

The	large	arrow	with	the	prohibited	sign	shows	an	EJB	session	bean	talking	directly	to	the	Apache	ActiveMQ	Artemis	server.	This	is
not	recommended	as	you'll	most	likely	end	up	creating	a	new	connection	and	session	every	time	you	want	to	interact	from	the	EJB,
which	is	an	anti-pattern.

Architecture

13

For	more	information	on	using	the	JCA	adaptor,	please	see	Application	Server	Integration	and	Java	EE.

Apache	ActiveMQ	Artemis	stand-alone	server

Architecture

14

Apache	ActiveMQ	Artemis	can	also	be	deployed	as	a	stand-alone	server.	This	means	a	fully	independent	messaging	server	not
dependent	on	a	Java	EE	application	server.

The	standard	stand-alone	messaging	server	configuration	comprises	a	core	messaging	server	and	a	JMS	service.

The	role	of	the	JMS	Service	is	to	deploy	any	JMS	Queue,	Topic	and	ConnectionFactory	instances	from	any	server	side	JMS
configuration.	It	also	provides	a	simple	management	API	for	creating	and	destroying	Queues	and	Topics	which	can	be	accessed	via	JMX
or	the	connection.	It	is	a	separate	service	to	the	ActiveMQ	Artemis	core	server,	since	the	core	server	is	JMS	agnostic.	If	you	don't	want
to	deploy	any	JMS	Queue	or	Topic	via	server	side	XML	configuration	and	don't	require	a	JMS	management	API	on	the	server	side	then
you	can	disable	this	service.

The	stand-alone	server	configuration	uses	Airline	for	bootstrapping	the	Broker.

The	stand-alone	server	architecture	is	shown	in	figure	3.3	below:

Architecture

15

https://github.com/airlift/airline

For	more	information	on	server	configuration	files	see	Server	Configuration

Architecture

16

Architecture

17

Using	the	Server
This	chapter	will	familiarise	you	with	how	to	use	the	Apache	ActiveMQ	Artemis	server.

We'll	show	where	it	is,	how	to	start	and	stop	it,	and	we'll	describe	the	directory	layout	and	what	all	the	files	are	and	what	they	do.

For	the	remainder	of	this	chapter	when	we	talk	about	the	Apache	ActiveMQ	Artemis	server	we	mean	the	Apache	ActiveMQ	Artemis
standalone	server,	in	its	default	configuration	with	a	JMS	Service	enabled.

This	document	will	refer	to	the	full	path	of	the	directory	where	the	ActiveMQ	distribution	has	been	extracted	to	as		${ARTEMIS_HOME}	
directory.

Installation
After	downloading	the	distribution,	the	following	highlights	some	important	folders	on	the	distribution:

									|___	bin

									|

									|___	web

									|						|___	user-manual

									|						|___	api

									|

									|___	examples

									|						|___	core

									|						|___	javaee

									|						|___	jms

									|

									|___	lib

									|

									|___	schema

	bin		--	binaries	and	scripts	needed	to	run	ActiveMQ	Artemis.

	web		--	The	folder	where	the	web	context	is	loaded	when	ActiveMQ	Artemis	runs.

	user-manual		--	The	user	manual	is	placed	under	the	web	folder.

	api		--	The	api	documentation	is	placed	under	the	web	folder

	examples		--	JMS	and	Java	EE	examples.	Please	refer	to	the	'running	examples'	chapter	for	details	on	how	to	run	them.

	lib		--	jars	and	libraries	needed	to	run	ActiveMQ	Artemis

	licenses		--	licenses	for	ActiveMQ	Artemis

	schemas		--	XML	Schemas	used	to	validate	ActiveMQ	Artemis	configuration	files

Creating	a	Broker	Instance
A	broker	instance	is	the	directory	containing	all	the	configuration	and	runtime	data,	such	as	logs	and	data	files,	associated	with	a	broker
process.	It	is	recommended	that	you	do	not	create	the	instance	directory	under		${ARTEMIS_HOME}	.	This	separation	is	encouraged	so	that
you	can	more	easily	upgrade	when	the	next	version	of	ActiveMQ	Artemis	is	released.

On	Unix	systems,	it	is	a	common	convention	to	store	this	kind	of	runtime	data	under	the		/var/lib		directory.	For	example,	to	create	an
instance	at	'/var/lib/mybroker',	run	the	following	commands	in	your	command	line	shell:

cd	/var/lib

${ARTEMIS_HOME}/bin/artemis	create	mybroker

Using	the	Server

18

A	broker	instance	directory	will	contain	the	following	sub	directories:

	bin	:	holds	execution	scripts	associated	with	this	instance.
	etc	:	hold	the	instance	configuration	files
	data	:	holds	the	data	files	used	for	storing	persistent	messages
	log	:	holds	rotating	log	files
	tmp	:	holds	temporary	files	that	are	safe	to	delete	between	broker	runs

At	this	point	you	may	want	to	adjust	the	default	configuration	located	in	the		etc		directory.

Options

There	are	several	options	you	can	use	when	creating	an	instance.

For	a	full	list	of	updated	properties	always	use:

	$./artemis	help	create

	NAME

									artemis	create	-	creates	a	new	broker	instance

	SYNOPSIS

									artemis	create	[--allow-anonymous]

																	[--cluster-password	<clusterPassword>]	[--cluster-user	<clusterUser>]

																	[--clustered]	[--data	<data>]	[--encoding	<encoding>]	[--force]

																	[--home	<home>]	[--host	<host>]	[--java-options	<javaOptions>]

																	[--password	<password>]	[--port-offset	<portOffset>]	[--replicated]

																	[--role	<role>]	[--shared-store]	[--silent]	[--user	<user>]	[--]

																	<directory>

	OPTIONS

									--allow-anonymous

													Enables	anonymous	configuration	on	security	(Default:	input)

									--cluster-password	<clusterPassword>

													The	cluster	password	to	use	for	clustering.	(Default:	input)

									--cluster-user	<clusterUser>

													The	cluster	user	to	use	for	clustering.	(Default:	input)

									--clustered

													Enable	clustering

									--data	<data>

													Directory	where	ActiveMQ	Data	is	used.	Path	are	relative	to

													artemis.instance/bin

									--encoding	<encoding>

													The	encoding	that	text	files	should	use

									--force

													Overwrite	configuration	at	destination	directory

									--home	<home>

													Directory	where	ActiveMQ	Artemis	is	installed

									--host	<host>

													The	host	name	of	the	broker	(Default:	0.0.0.0	or	input	if	clustered)

									--java-options	<javaOptions>

													Extra	java	options	to	be	passed	to	the	profile

									--password	<password>

													The	user's	password	(Default:	input)

									--port-offset	<portOffset>

													Off	sets	the	default	ports

									--replicated

Using	the	Server

19

													Enable	broker	replication

									--role	<role>

													The	name	for	the	role	created	(Default:	amq)

									--shared-store

													Enable	broker	shared	store

									--silent

													It	will	disable	all	the	inputs,	and	it	would	make	a	best	guess	for

													any	required	input

									--user	<user>

													The	username	(Default:	input)

									--

													This	option	can	be	used	to	separate	command-line	options	from	the

													list	of	argument,	(useful	when	arguments	might	be	mistaken	for

													command-line	options

									<directory>

													The	instance	directory	to	hold	the	broker's	configuration	and	data

Some	of	these	properties	may	be	mandatory	in	certain	configurations	and	the	system	may	ask	you	for	additional	input.

				./artemis	create	/usr/server

				Creating	ActiveMQ	Artemis	instance	at:	/user/server

				--user:	is	mandatory	with	this	configuration:

				Please	provide	the	default	username:

				admin

				--password:	is	mandatory	with	this	configuration:

				Please	provide	the	default	password:

				--allow-anonymous:	is	mandatory	with	this	configuration:

				Allow	anonymous	access?	(Y/N):

				y

				You	can	now	start	the	broker	by	executing:

							"/user/server/bin/artemis"	run

				Or	you	can	run	the	broker	in	the	background	using:

							"/user/server/bin/artemis-service"	start

Starting	and	Stopping	a	Broker	Instance

Assuming	you	created	the	broker	instance	under		/var/lib/mybroker		all	you	need	to	do	start	running	the	broker	instance	is	execute:

/var/lib/mybroker/bin/artemis	run

Now	that	the	broker	is	running,	you	can	optionally	run	some	of	the	included	examples	to	verify	the	the	broker	is	running	properly.

To	stop	the	Apache	ActiveMQ	Artemis	instance	you	will	use	the	same		artemis		script,	but	with	the		stop	argument	.	Example:

/var/lib/mybroker/bin/artemis	stop

Please	note	that	Apache	ActiveMQ	Artemis	requires	a	Java	7	or	later	runtime	to	run.

By	default	the		etc/bootstrap.xml		configuration	is	used.	The	configuration	can	be	changed	e.g.	by	running		./artemis	run	--
xml:path/to/bootstrap.xml		or	another	config	of	your	choosing.

Using	the	Server

20

Environment	variables	are	used	to	provide	ease	of	changing	ports,	hosts	and	data	directories	used	and	can	be	found	in
	etc/artemis.profile		on	linux	and		etc\artemis.profile.cmd		on	Windows.

Server	JVM	settings

The	run	scripts	set	some	JVM	settings	for	tuning	the	garbage	collection	policy	and	heap	size.	We	recommend	using	a	parallel	garbage
collection	algorithm	to	smooth	out	latency	and	minimise	large	GC	pauses.

By	default	Apache	ActiveMQ	Artemis	runs	in	a	maximum	of	1GiB	of	RAM.	To	increase	the	memory	settings	change	the		-Xms		and		-
Xmx		memory	settings	as	you	would	for	any	Java	program.

If	you	wish	to	add	any	more	JVM	arguments	or	tune	the	existing	ones,	the	run	scripts	are	the	place	to	do	it.

Pre-configured	Options
The	distribution	contains	several	standard	configuration	sets	for	running:

Non	clustered	stand-alone.

Clustered	stand-alone

Replicated	stand-alone

Shared-store	stand-alone

You	can	of	course	create	your	own	configuration	and	specify	any	configuration	when	running	the	run	script.

Library	Path
If	you're	using	the	Asynchronous	IO	Journal	on	Linux,	you	need	to	specify		java.library.path		as	a	property	on	your	Java	options.
This	is	done	automatically	in	the	scripts.

If	you	don't	specify		java.library.path		at	your	Java	options	then	the	JVM	will	use	the	environment	variable		LD_LIBRARY_PATH	.

You	will	need	to	make	sure	libaio	is	installed	on	Linux.	For	more	information	refer	to	the	libaio	chapter	at	Runtime	Dependencies

System	properties
Apache	ActiveMQ	Artemis	can	take	a	system	property	on	the	command	line	for	configuring	logging.

For	more	information	on	configuring	logging,	please	see	the	section	on	Logging.

Configuration	files

The	configuration	file	used	to	bootstrap	the	server	(e.g.		bootstrap.xml		by	default)	references	the	specific	broker	configuration	files.

	broker.xml	.	This	is	the	main	ActiveMQ	configuration	file.	All	the	parameters	in	this	file	are	described	here

It	is	also	possible	to	use	system	property	substitution	in	all	the	configuration	files.	by	replacing	a	value	with	the	name	of	a	system
property.	Here	is	an	example	of	this	with	a	connector	configuration:

<connector	name="netty">tcp://${activemq.remoting.netty.host:localhost}:${activemq.remoting.netty.port:61616}</connector>

Using	the	Server

21

Here	you	can	see	we	have	replaced	2	values	with	system	properties		activemq.remoting.netty.host		and		activemq.remoting.netty.port	.
These	values	will	be	replaced	by	the	value	found	in	the	system	property	if	there	is	one,	if	not	they	default	back	to	localhost	or	61616
respectively.	It	is	also	possible	to	not	supply	a	default.	i.e.		${activemq.remoting.netty.host}	,	however	the	system	property	must	be
supplied	in	that	case.

Bootstrap	File

The	stand-alone	server	is	basically	a	set	of	POJOs	which	are	instantiated	by	Airline	commands.

The	bootstrap	file	is	very	simple.	Let's	take	a	look	at	an	example:

<broker	xmlns="http://activemq.org/schema">

			<file:core	configuration="${activemq.home}/config/stand-alone/non-clustered/broker.xml"></core>

			<basic-security/>

</broker>

core	-	Instantiates	a	core	server	using	the	configuration	file	from	the		configuration		attribute.	This	is	the	main	broker	POJO
necessary	to	do	all	the	real	messaging	work.	In	addition	all	JMS	objects	such	as:	Queues,	Topics	and	ConnectionFactory	instances
are	configured	here.

The	main	configuration	file.

The	configuration	for	the	Apache	ActiveMQ	Artemis	core	server	is	contained	in		broker.xml	.	This	is	what	the	FileConfiguration	bean
uses	to	configure	the	messaging	server.

There	are	many	attributes	which	you	can	configure	Apache	ActiveMQ	Artemis.	In	most	cases	the	defaults	will	do	fine,	in	fact	every
attribute	can	be	defaulted	which	means	a	file	with	a	single	empty		configuration		element	is	a	valid	configuration	file.	The	different
configuration	will	be	explained	throughout	the	manual	or	you	can	refer	to	the	configuration	reference	here.

Windows	Server
On	windows	you	will	have	the	option	to	run	ActiveMQ	Artemis	as	a	service.	Just	use	the	following	command	to	install	it:

	$./artemis-service.exe	install

The	create	process	should	give	you	a	hint	of	the	available	commands	available	for	the	artemis-service.exe

Using	the	Server

22

Using	JMS
Although	Apache	ActiveMQ	Artemis	provides	a	JMS	agnostic	messaging	API,	many	users	will	be	more	comfortable	using	JMS.

JMS	is	a	very	popular	API	standard	for	messaging,	and	most	messaging	systems	provide	a	JMS	API.	If	you	are	completely	new	to
JMS	we	suggest	you	follow	the	Oracle	JMS	tutorial	-	a	full	JMS	tutorial	is	out	of	scope	for	this	guide.

Apache	ActiveMQ	Artemis	also	ships	with	a	wide	range	of	examples,	many	of	which	demonstrate	JMS	API	usage.	A	good	place	to
start	would	be	to	play	around	with	the	simple	JMS	Queue	and	Topic	example,	but	we	also	provide	examples	for	many	other	parts	of
the	JMS	API.	A	full	description	of	the	examples	is	available	in	Examples.

In	this	section	we'll	go	through	the	main	steps	in	configuring	the	server	for	JMS	and	creating	a	simple	JMS	program.	We'll	also	show
how	to	configure	and	use	JNDI,	and	also	how	to	use	JMS	with	Apache	ActiveMQ	Artemis	without	using	any	JNDI.

A	simple	ordering	system
For	this	chapter	we're	going	to	use	a	very	simple	ordering	system	as	our	example.	It	is	a	somewhat	contrived	example	because	of	its
extreme	simplicity,	but	it	serves	to	demonstrate	the	very	basics	of	setting	up	and	using	JMS.

We	will	have	a	single	JMS	Queue	called		OrderQueue	,	and	we	will	have	a	single		MessageProducer		sending	an	order	message	to	the	queue
and	a	single		MessageConsumer		consuming	the	order	message	from	the	queue.

The	queue	will	be	a		durable		queue,	i.e.	it	will	survive	a	server	restart	or	crash.	We	also	want	to	pre-deploy	the	queue,	i.e.	specify	the
queue	in	the	server	configuration	so	it	is	created	automatically	without	us	having	to	explicitly	create	it	from	the	client.

JNDI	Configuration
The	JMS	specification	establishes	the	convention	that	administered	objects	(i.e.	JMS	queue,	topic	and	connection	factory	instances)	are
made	available	via	the	JNDI	API.	Brokers	are	free	to	implement	JNDI	as	they	see	fit	assuming	the	implementation	fits	the	API.	Apache
ActiveMQ	Artemis	does	not	have	a	JNDI	server.	Rather,	it	uses	a	client-side	JNDI	implementation	that	relies	on	special	properties	set
in	the	environment	to	construct	the	appropriate	JMS	objects.	In	other	words,	no	objects	are	stored	in	JNDI	on	the	Apache	ActiveMQ
Artemis	server,	instead	they	are	simply	instantiated	on	the	client	based	on	the	provided	configuration.	Let's	look	at	the	different	kinds	of
administered	objects	and	how	to	configure	them.

Note

The	following	configuration	properties	are	strictly	required	when	Apache	ActiveMQ	Artemis	is	running	in	stand-alone	mode.
When	Apache	ActiveMQ	Artemis	is	integrated	to	an	application	server	(e.g.	Wildfly)	the	application	server	itself	will	almost
certainly	provide	a	JNDI	client	with	its	own	properties.

ConnectionFactory	JNDI
A	JMS	connection	factory	is	used	by	the	client	to	make	connections	to	the	server.	It	knows	the	location	of	the	server	it	is	connecting	to,
as	well	as	many	other	configuration	parameters.

Here's	a	simple	example	of	the	JNDI	context	environment	for	a	client	looking	up	a	connection	factory	to	access	an	embedded	instance	of
Apache	ActiveMQ	Artemis:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.invmConnectionFactory=vm://0

Using	JMS

23

http://docs.oracle.com/javaee/7/tutorial/partmessaging.htm

In	this	instance	we	have	created	a	connection	factory	that	is	bound	to		invmConnectionFactory	,	any	entry	with	prefix
	connectionFactory.		will	create	a	connection	factory.

In	certain	situations	there	could	be	multiple	server	instances	running	within	a	particular	JVM.	In	that	situation	each	server	would
typically	have	an	InVM	acceptor	with	a	unique	server-ID.	A	client	using	JMS	and	JNDI	can	account	for	this	by	specifying	a	connction
factory	for	each	server,	like	so:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.invmConnectionFactory0=vm://0

connectionFactory.invmConnectionFactory1=vm://1

connectionFactory.invmConnectionFactory2=vm://2

Here	is	a	list	of	all	the	supported	URL	schemes:

	vm	

	tcp	

	udp	

	jgroups	

Most	clients	won't	be	connecting	to	an	embedded	broker.	Clients	will	most	commonly	connect	across	a	network	a	remote	broker.	Here's
a	simple	example	of	a	client	configuring	a	connection	factory	to	connect	to	a	remote	broker	running	on	myhost:5445:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.ConnectionFactory=tcp://myhost:5445

In	the	example	above	the	client	is	using	the		tcp		scheme	for	the	provider	URL.	A	client	may	also	specify	multiple	comma-delimited
host:port	combinations	in	the	URL	(e.g.		(tcp://remote-host1:5445,remote-host2:5445)).	Whether	there	is	one	or	many	host:port
combinations	in	the	URL	they	are	treated	as	the	initial	connector(s)	for	the	underlying	connection.

The		udp		scheme	is	also	supported	which	should	use	a	host:port	combination	that	matches	the		group-address		and		group-port		from
the	corresponding		broadcast-group		configured	on	the	ActiveMQ	Artemis	server(s).

Each	scheme	has	a	specific	set	of	properties	which	can	be	set	using	the	traditional	URL	query	string	format	(e.g.		scheme://host:port?
key1=value1&key2=value2)	to	customize	the	underlying	transport	mechanism.	For	example,	if	a	client	wanted	to	connect	to	a	remote
server	using	TCP	and	SSL	it	would	create	a	connection	factory	like	so,		tcp://remote-host:5445?ssl-enabled=true	.

All	the	properties	available	for	the		tcp		scheme	are	described	in	the	documentation	regarding	the	Netty	transport.

Note	if	you	are	using	the		tcp		scheme	and	multiple	addresses	then	a	query	can	be	applied	to	all	the	url's	or	just	to	an	individual
connector,	so	where	you	have

	(tcp://remote-host1:5445?httpEnabled=true,remote-host2:5445?httpEnabled=true)?clientID=1234	

then	the		httpEnabled		property	is	only	set	on	the	individual	connectors	where	as	the		clientId		is	set	on	the	actual	connection	factory.
Any	connector	specific	properties	set	on	the	whole	URI	will	be	applied	to	all	the	connectors.

The		udp		scheme	supports	4	properties:

	localAddress		-	If	you	are	running	with	multiple	network	interfaces	on	the	same	machine,	you	may	want	to	specify	that	the
discovery	group	listens	only	only	a	specific	interface.	To	do	this	you	can	specify	the	interface	address	with	this	parameter.

	localPort		-	If	you	want	to	specify	a	local	port	to	which	the	datagram	socket	is	bound	you	can	specify	it	here.	Normally	you
would	just	use	the	default	value	of	-1	which	signifies	that	an	anonymous	port	should	be	used.	This	parameter	is	always	specified	in
conjunction	with		localAddress	.

	refreshTimeout		-	This	is	the	period	the	discovery	group	waits	after	receiving	the	last	broadcast	from	a	particular	server	before
removing	that	servers	connector	pair	entry	from	its	list.	You	would	normally	set	this	to	a	value	significantly	higher	than	the
broadcast-period	on	the	broadcast	group	otherwise	servers	might	intermittently	disappear	from	the	list	even	though	they	are	still
broadcasting	due	to	slight	differences	in	timing.	This	parameter	is	optional,	the	default	value	is	10000	milliseconds	(10	seconds).

Using	JMS

24

	discoveryInitialWaitTimeout		-	If	the	connection	factory	is	used	immediately	after	creation	then	it	may	not	have	had	enough	time
to	received	broadcasts	from	all	the	nodes	in	the	cluster.	On	first	usage,	the	connection	factory	will	make	sure	it	waits	this	long	since
creation	before	creating	the	first	connection.	The	default	value	for	this	parameter	is	10000	milliseconds.

Lastly,	the		jgroups		scheme	is	supported	which	provides	an	alternative	to	the		udp		scheme	for	server	discovery.	The	URL	pattern	is
either		jgroups://channelName?file=jgroups-xml-conf-filename		where	jgroups-xml-conf-filename		refers	to	an	XML	file	on	the	classpath
that	contains	the	JGroups	configuration	or	it	can	be		jgroups://channelName?properties=some-jgroups-properties	.	In	both	instance	the
	channelName		is	the	name	given	to	the	jgroups	channel	created.

The		refreshTimeout		and		discoveryInitialWaitTimeout		properties	are	supported	just	like	with		udp	.

The	default	type	for	the	default	connection	factory	is	of	type		javax.jms.ConnectionFactory	.	This	can	be	changed	by	setting	the	type
like	so

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

java.naming.provider.url=tcp://localhost:5445?type=CF

In	this	example	it	is	still	set	to	the	default,	below	shows	a	list	of	types	that	can	be	set.

Configuration	for	Connection	Factory	Types

type interface

CF	(default) javax.jms.ConnectionFactory

XA_CF javax.jms.XAConnectionFactory

QUEUE_CF javax.jms.QueueConnectionFactory

QUEUE_XA_CF javax.jms.XAQueueConnectionFactory

TOPIC_CF javax.jms.TopicConnectionFactory

TOPIC_XA_CF javax.jms.XATopicConnectionFactory

Destination	JNDI

JMS	destinations	are	also	typically	looked	up	via	JNDI.	As	with	connection	factories,	destinations	can	be	configured	using	special
properties	in	the	JNDI	context	environment.	The	property	name	should	follow	the	pattern:		queue.<jndi-binding>		or		topic.<jndi-
binding>	.	The	property	value	should	be	the	name	of	the	queue	hosted	by	the	Apache	ActiveMQ	Artemis	server.	For	example,	if	the
server	had	a	JMS	queue	configured	like	so:

<queue	name="OrderQueue"/>

And	if	the	client	wanted	to	bind	this	queue	to	"queues/OrderQueue"	then	the	JNDI	properties	would	be	configured	like	so:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

java.naming.provider.url=tcp://myhost:5445

queue.queues/OrderQueue=OrderQueue

It	is	also	possible	to	look-up	JMS	destinations	which	haven't	been	configured	explicitly	in	the	JNDI	context	environment.	This	is
possible	using		dynamicQueues/		or		dynamicTopics/		in	the	look-up	string.	For	example,	if	the	client	wanted	to	look-up	the
aforementioned	"OrderQueue"	it	could	do	so	simply	by	using	the	string	"dynamicQueues/OrderQueue".	Note,	the	text	that	follows
	dynamicQueues/		or		dynamicTopics/		must	correspond	exactly	to	the	name	of	the	destination	on	the	server.

The	code

Here's	the	code	for	the	example:

Using	JMS

25

First	we'll	create	a	JNDI	initial	context	from	which	to	lookup	our	JMS	objects.	If	the	above	properties	are	set	in		jndi.properties		and	it
is	on	the	classpath	then	any	new,	empty		InitialContext		will	be	initialized	using	those	properties:

InitialContext	ic	=	new	InitialContext();

//Now	we'll	look	up	the	connection	factory	from	which	we	can	create

//connections	to	myhost:5445:

ConnectionFactory	cf	=	(ConnectionFactory)ic.lookup("ConnectionFactory");

//And	look	up	the	Queue:

Queue	orderQueue	=	(Queue)ic.lookup("queues/OrderQueue");

//Next	we	create	a	JMS	connection	using	the	connection	factory:

Connection	connection	=	cf.createConnection();

//And	we	create	a	non	transacted	JMS	Session,	with	AUTO_ACKNOWLEDGE

//acknowledge	mode:

Session	session	=	connection.createSession(false,	Session.AUTO_ACKNOWLEDGE);

//We	create	a	MessageProducer	that	will	send	orders	to	the	queue:

MessageProducer	producer	=	session.createProducer(orderQueue);

//And	we	create	a	MessageConsumer	which	will	consume	orders	from	the

//queue:

MessageConsumer	consumer	=	session.createConsumer(orderQueue);

//We	make	sure	we	start	the	connection,	or	delivery	won't	occur	on	it:

connection.start();

//We	create	a	simple	TextMessage	and	send	it:

TextMessage	message	=	session.createTextMessage("This	is	an	order");

producer.send(message);

//And	we	consume	the	message:

TextMessage	receivedMessage	=	(TextMessage)consumer.receive();

System.out.println("Got	order:	"	+	receivedMessage.getText());

It	is	as	simple	as	that.	For	a	wide	range	of	working	JMS	examples	please	see	the	examples	directory	in	the	distribution.

Warning

Please	note	that	JMS	connections,	sessions,	producers	and	consumers	are	designed	to	be	re-used.

It	is	an	anti-pattern	to	create	new	connections,	sessions,	producers	and	consumers	for	each	message	you	produce	or	consume.	If
you	do	this,	your	application	will	perform	very	poorly.	This	is	discussed	further	in	the	section	on	performance	tuning
Performance	Tuning.

Directly	instantiating	JMS	Resources	without	using	JNDI

Although	it	is	a	very	common	JMS	usage	pattern	to	lookup	JMS	Administered	Objects	(that's	JMS	Queue,	Topic	and
ConnectionFactory	instances)	from	JNDI,	in	some	cases	you	just	think	"Why	do	I	need	JNDI?	Why	can't	I	just	instantiate	these	objects
directly?"

With	Apache	ActiveMQ	Artemis	you	can	do	exactly	that.	Apache	ActiveMQ	Artemis	supports	the	direct	instantiation	of	JMS	Queue,
Topic	and	ConnectionFactory	instances,	so	you	don't	have	to	use	JNDI	at	all.

Using	JMS

26

For	a	full	working	example	of	direct	instantiation	please	look	at	the	"Instantiate	JMS	Objects	Directly"	example	under	the	JMS
section	of	the	examples.	See	the	Examples	section	for	more	info.

Here's	our	simple	example,	rewritten	to	not	use	JNDI	at	all:

We	create	the	JMS	ConnectionFactory	object	via	the	ActiveMQJMSClient	Utility	class,	note	we	need	to	provide	connection
parameters	and	specify	which	transport	we	are	using,	for	more	information	on	connectors	please	see	Configuring	the	Transport.

TransportConfiguration	transportConfiguration	=	new	TransportConfiguration(NettyConnectorFactory.class.getName());

ConnectionFactory	cf	=	ActiveMQJMSClient.createConnectionFactoryWithoutHA(JMSFactoryType.CF,transportConfiguration);

//We	also	create	the	JMS	Queue	object	via	the	ActiveMQJMSClient	Utility

//class:

Queue	orderQueue	=	ActiveMQJMSClient.createQueue("OrderQueue");

//Next	we	create	a	JMS	connection	using	the	connection	factory:

Connection	connection	=	cf.createConnection();

//And	we	create	a	non	transacted	JMS	Session,	with	AUTO_ACKNOWLEDGE

//acknowledge	mode:

Session	session	=	connection.createSession(false,	Session.AUTO_ACKNOWLEDGE);

//We	create	a	MessageProducer	that	will	send	orders	to	the	queue:

MessageProducer	producer	=	session.createProducer(orderQueue);

//And	we	create	a	MessageConsumer	which	will	consume	orders	from	the

//queue:

MessageConsumer	consumer	=	session.createConsumer(orderQueue);

//We	make	sure	we	start	the	connection,	or	delivery	won't	occur	on	it:

connection.start();

//We	create	a	simple	TextMessage	and	send	it:

TextMessage	message	=	session.createTextMessage("This	is	an	order");

producer.send(message);

//And	we	consume	the	message:

TextMessage	receivedMessage	=	(TextMessage)consumer.receive();

System.out.println("Got	order:	"	+	receivedMessage.getText());

Setting	The	Client	ID

This	represents	the	client	id	for	a	JMS	client	and	is	needed	for	creating	durable	subscriptions.	It	is	possible	to	configure	this	on	the
connection	factory	and	can	be	set	via	the		clientId		element.	Any	connection	created	by	this	connection	factory	will	have	this	set	as	its
client	id.

Setting	The	Batch	Size	for	DUPS_OK

When	the	JMS	acknowledge	mode	is	set	to		DUPS_OK		it	is	possible	to	configure	the	consumer	so	that	it	sends	acknowledgements	in
batches	rather	that	one	at	a	time,	saving	valuable	bandwidth.	This	can	be	configured	via	the	connection	factory	via	the		dupsOkBatchSize	
element	and	is	set	in	bytes.	The	default	is	1024	*	1024	bytes	=	1	MiB.

Setting	The	Transaction	Batch	Size

Using	JMS

27

When	receiving	messages	in	a	transaction	it	is	possible	to	configure	the	consumer	to	send	acknowledgements	in	batches	rather	than
individually	saving	valuable	bandwidth.	This	can	be	configured	on	the	connection	factory	via	the		transactionBatchSize		element	and	is
set	in	bytes.	The	default	is	1024	*	1024.

Using	JMS

28

Using	Core
Apache	ActiveMQ	Artemis	core	is	a	completely	JMS-agnostic	messaging	system	with	its	own	non-JMS	API.	We	call	this	the	core	API.

If	you	don't	want	to	use	JMS	you	can	use	the	core	API	directly.	The	core	API	provides	all	the	functionality	of	JMS	but	without	much
of	the	complexity.	It	also	provides	features	that	are	not	available	using	JMS.

Core	Messaging	Concepts

Some	of	the	core	messaging	concepts	are	similar	to	JMS	concepts,	but	core	messaging	concepts	differ	in	some	ways.	In	general	the	core
messaging	API	is	simpler	than	the	JMS	API,	since	we	remove	distinctions	between	queues,	topics	and	subscriptions.	We'll	discuss	each
of	the	major	core	messaging	concepts	in	turn,	but	to	see	the	API	in	detail,	please	consult	the	Javadoc.

Message

A	message	is	the	unit	of	data	which	is	sent	between	clients	and	servers.

A	message	has	a	body	which	is	a	buffer	containing	convenient	methods	for	reading	and	writing	data	into	it.

A	message	has	a	set	of	properties	which	are	key-value	pairs.	Each	property	key	is	a	string	and	property	values	can	be	of	type
integer,	long,	short,	byte,	byte[],	String,	double,	float	or	boolean.

A	message	has	an	address	it	is	being	sent	to.	When	the	message	arrives	on	the	server	it	is	routed	to	any	queues	that	are	bound	to	the
address	-	if	the	queues	are	bound	with	any	filter,	the	message	will	only	be	routed	to	that	queue	if	the	filter	matches.	An	address
may	have	many	queues	bound	to	it	or	even	none.	There	may	also	be	entities	other	than	queues,	like	diverts	bound	to	addresses.

Messages	can	be	either	durable	or	non	durable.	Durable	messages	in	a	durable	queue	will	survive	a	server	crash	or	restart.	Non
durable	messages	will	never	survive	a	server	crash	or	restart.

Messages	can	be	specified	with	a	priority	value	between	0	and	9.	0	represents	the	lowest	priority	and	9	represents	the	highest.
Apache	ActiveMQ	Artemis	will	attempt	to	deliver	higher	priority	messages	before	lower	priority	ones.

Messages	can	be	specified	with	an	optional	expiry	time.	Apache	ActiveMQ	Artemis	will	not	deliver	messages	after	its	expiry	time
has	been	exceeded.

Messages	also	have	an	optional	timestamp	which	represents	the	time	the	message	was	sent.

Apache	ActiveMQ	Artemis	also	supports	the	sending/consuming	of	very	large	messages	much	larger	than	can	fit	in	available	RAM
at	any	one	time.

Address

A	server	maintains	a	mapping	between	an	address	and	a	set	of	queues.	Zero	or	more	queues	can	be	bound	to	a	single	address.	Each	queue
can	be	bound	with	an	optional	message	filter.	When	a	message	is	routed,	it	is	routed	to	the	set	of	queues	bound	to	the	message's	address.
If	any	of	the	queues	are	bound	with	a	filter	expression,	then	the	message	will	only	be	routed	to	the	subset	of	bound	queues	which	match
that	filter	expression.

Other	entities,	such	as	diverts	can	also	be	bound	to	an	address	and	messages	will	also	be	routed	there.

Note

In	core,	there	is	no	concept	of	a	Topic,	Topic	is	a	JMS	only	term.	Instead,	in	core,	we	just	deal	with	addresses	and	queues.

For	example,	a	JMS	topic	would	be	implemented	by	a	single	address	to	which	many	queues	are	bound.	Each	queue	represents	a
subscription	of	the	topic.	A	JMS	Queue	would	be	implemented	as	a	single	address	to	which	one	queue	is	bound	-	that	queue
represents	the	JMS	queue.

Using	Core

29

Queue

Queues	can	be	durable,	meaning	the	messages	they	contain	survive	a	server	crash	or	restart,	as	long	as	the	messages	in	them	are	durable.
Non	durable	queues	do	not	survive	a	server	restart	or	crash	even	if	the	messages	they	contain	are	durable.

Queues	can	also	be	temporary,	meaning	they	are	automatically	deleted	when	the	client	connection	is	closed,	if	they	are	not	explicitly
deleted	before	that.

Queues	can	be	bound	with	an	optional	filter	expression.	If	a	filter	expression	is	supplied	then	the	server	will	only	route	messages	that
match	that	filter	expression	to	any	queues	bound	to	the	address.

Many	queues	can	be	bound	to	a	single	address.	A	particular	queue	is	only	bound	to	a	maximum	of	one	address.

ServerLocator

Clients	use		ServerLocator		instances	to	create		ClientSessionFactory		instances.		ServerLocator		instances	are	used	to	locate	servers	and
create	connections	to	them.

In	JMS	terms	think	of	a		ServerLocator		in	the	same	way	you	would	a	JMS	Connection	Factory.

	ServerLocator		instances	are	created	using	the		ActiveMQClient		factory	class.

ClientSessionFactory

Clients	use		ClientSessionFactory		instances	to	create		ClientSession		instances.		ClientSessionFactory		instances	are	basically	the
connection	to	a	server

In	JMS	terms	think	of	them	as	JMS	Connections.

	ClientSessionFactory		instances	are	created	using	the		ServerLocator		class.

ClientSession

A	client	uses	a	ClientSession	for	consuming	and	producing	messages	and	for	grouping	them	in	transactions.	ClientSession	instances	can
support	both	transactional	and	non	transactional	semantics	and	also	provide	an		XAResource		interface	so	messaging	operations	can	be
performed	as	part	of	a	JTA	transaction.

ClientSession	instances	group	ClientConsumers	and	ClientProducers.

ClientSession	instances	can	be	registered	with	an	optional		SendAcknowledgementHandler	.	This	allows	your	client	code	to	be	notified
asynchronously	when	sent	messages	have	successfully	reached	the	server.	This	unique	Apache	ActiveMQ	Artemis	feature,	allows	you
to	have	full	guarantees	that	sent	messages	have	reached	the	server	without	having	to	block	on	each	message	sent	until	a	response	is
received.	Blocking	on	each	messages	sent	is	costly	since	it	requires	a	network	round	trip	for	each	message	sent.	By	not	blocking	and
receiving	send	acknowledgements	asynchronously	you	can	create	true	end	to	end	asynchronous	systems	which	is	not	possible	using	the
standard	JMS	API.	For	more	information	on	this	advanced	feature	please	see	the	section	Guarantees	of	sends	and	commits.

ClientConsumer

Clients	use		ClientConsumer		instances	to	consume	messages	from	a	queue.	Core	Messaging	supports	both	synchronous	and
asynchronous	message	consumption	semantics.		ClientConsumer		instances	can	be	configured	with	an	optional	filter	expression	and	will
only	consume	messages	which	match	that	expression.

ClientProducer

Clients	create		ClientProducer		instances	on		ClientSession		instances	so	they	can	send	messages.	ClientProducer	instances	can	specify
an	address	to	which	all	sent	messages	are	routed,	or	they	can	have	no	specified	address,	and	the	address	is	specified	at	send	time	for	the
message.

Warning

Using	Core

30

http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html

Please	note	that	ClientSession,	ClientProducer	and	ClientConsumer	instances	are	designed	to	be	re-used.

It's	an	anti-pattern	to	create	new	ClientSession,	ClientProducer	and	ClientConsumer	instances	for	each	message	you	produce	or
consume.	If	you	do	this,	your	application	will	perform	very	poorly.	This	is	discussed	further	in	the	section	on	performance
tuning	Performance	Tuning.

A	simple	example	of	using	Core

Here's	a	very	simple	program	using	the	core	messaging	API	to	send	and	receive	a	message.	Logically	it's	comprised	of	two	sections:
firstly	setting	up	the	producer	to	write	a	message	to	an	addresss,	and	secondly,	creating	a	queue	for	the	consumer,	creating	the	consumer
and	starting	it.

ServerLocator	locator	=	ActiveMQClient.createServerLocatorWithoutHA(new	TransportConfiguration(

																																											InVMConnectorFactory.class.getName()));

//	In	this	simple	example,	we	just	use	one	session	for	both	producing	and	receiving

ClientSessionFactory	factory	=		locator.createClientSessionFactory();

ClientSession	session	=	factory.createSession();

//	A	producer	is	associated	with	an	address	...

ClientProducer	producer	=	session.createProducer("example");

ClientMessage	message	=	session.createMessage(true);

message.getBodyBuffer().writeString("Hello");

//	We	need	a	queue	attached	to	the	address	...

session.createQueue("example",	"example",	true);

//	And	a	consumer	attached	to	the	queue	...

ClientConsumer	consumer	=	session.createConsumer("example");

//	Once	we	have	a	queue,	we	can	send	the	message	...

producer.send(message);

//	We	need	to	start	the	session	before	we	can	-receive-	messages	...

session.start();

ClientMessage	msgReceived	=	consumer.receive();

System.out.println("message	=	"	+	msgReceived.getBodyBuffer().readString());

session.close();

Using	Core

31

Mapping	JMS	Concepts	to	the	Core	API
This	chapter	describes	how	JMS	destinations	are	mapped	to	Apache	ActiveMQ	Artemis	addresses.

Apache	ActiveMQ	Artemis	core	is	JMS-agnostic.	It	does	not	have	any	concept	of	a	JMS	topic.	A	JMS	topic	is	implemented	in	core	as
an	address	(the	topic	name)	with	zero	or	more	queues	bound	to	it.	Each	queue	bound	to	that	address	represents	a	topic	subscription.
Likewise,	a	JMS	queue	is	implemented	as	an	address	(the	JMS	queue	name)	with	one	single	queue	bound	to	it	which	represents	the	JMS
queue.

By	convention,	all	JMS	queues	map	to	core	queues	where	the	core	queue	name	has	the	string		jms.queue.		prepended	to	it.	E.g.	the	JMS
queue	with	the	name	"orders.europe"	would	map	to	the	core	queue	with	the	name	"jms.queue.orders.europe".	The	address	at	which	the
core	queue	is	bound	is	also	given	by	the	core	queue	name.

For	JMS	topics	the	address	at	which	the	queues	that	represent	the	subscriptions	are	bound	is	given	by	prepending	the	string
"jms.topic."	to	the	name	of	the	JMS	topic.	E.g.	the	JMS	topic	with	name	"news.europe"	would	map	to	the	core	address
"jms.topic.news.europe"

In	other	words	if	you	send	a	JMS	message	to	a	JMS	queue	with	name	"orders.europe"	it	will	get	routed	on	the	server	to	any	core	queues
bound	to	the	address	"jms.queue.orders.europe".	If	you	send	a	JMS	message	to	a	JMS	topic	with	name	"news.europe"	it	will	get	routed
on	the	server	to	any	core	queues	bound	to	the	address	"jms.topic.news.europe".

If	you	want	to	configure	settings	for	a	JMS	Queue	with	the	name	"orders.europe",	you	need	to	configure	the	corresponding	core	queue
"jms.queue.orders.europe":

<!--	expired	messages	in	JMS	Queue	"orders.europe"	will	be	sent	to	the	JMS	Queue	"expiry.europe"	-->

<address-setting	match="jms.queue.orders.europe">

			<expiry-address>jms.queue.expiry.europe</expiry-address>

			...

</address-setting>

Mapping	JMS	Concepts	to	the	Core	API

32

The	Client	Classpath
Apache	ActiveMQ	Artemis	requires	several	jars	on	the	Client	Classpath	depending	on	whether	the	client	uses	Apache	ActiveMQ
Artemis	Core	API,	JMS,	and	JNDI.

Warning

All	the	jars	mentioned	here	can	be	found	in	the		lib		directory	of	the	Apache	ActiveMQ	Artemis	distribution.	Be	sure	you	only
use	the	jars	from	the	correct	version	of	the	release,	you	must	not	mix	and	match	versions	of	jars	from	different	Apache	ActiveMQ
Artemis	versions.	Mixing	and	matching	different	jar	versions	may	cause	subtle	errors	and	failures	to	occur.

Apache	ActiveMQ	Artemis	Core	Client
If	you	are	using	just	a	pure	Apache	ActiveMQ	Artemis	Core	client	(i.e.	no	JMS)	then	you	need		activemq-core-client.jar	,		activemq-
commons.jar	,	and		netty.jar		on	your	client	classpath.

JMS	Client
If	you	are	using	JMS	on	the	client	side,	then	you	will	also	need	to	include		activemq-jms-client.jar		and		geronimo-jms_2.0_spec.jar	.

Note

	geronimo-jms_2.0_spec.jar		just	contains	Java	EE	API	interface	classes	needed	for	the		javax.jms.*		classes.	If	you	already	have
a	jar	with	these	interface	classes	on	your	classpath,	you	will	not	need	it.

The	Client	Classpath

33

Examples
The	Apache	ActiveMQ	Artemis	distribution	comes	with	over	90	run	out-of-the-box	examples	demonstrating	many	of	the	features.

The	examples	are	available	in	both	the	binary	and	source	distribution	under	the		examples		directory.	Examples	are	split	by	the	following
source	tree:

features	-	Examples	containing	broker	specific	features.

ha	-	examples	showing	failover	and	reconnection	capabilities.
clustered	-	examples	showing	load	balancing	and	distribution	capabilities.
perf	-	examples	allowing	you	to	run	a	few	performance	tests	on	the	server
sub-modules	-	examples	of	integrated	external	modules.

protocols	-	Protocol	specific	examples

openwire
mqtt
stomp
amqp

A	set	of	Java	EE	examples	are	also	provided	which	need	WildFly	installed	to	be	able	to	run.

Runnning	the	Examples
To	run	any	example,	simply		cd		into	the	appropriate	example	directory	and	type		mvn	verify		or		mvn	install		(For	details	please	read
the	readme.html	in	each	example	directory).

You	can	use	the	profile		-Pexamples		to	run	multiple	examples	under	any	example	tree.

For	each	server,	you	will	have	a	created	server	under		./target/server0		(some	examples	use	more	than	one	server).

You	have	the	option	to	prevent	the	example	from	starting	the	server	(e.g.	if	you	want	to	start	the	server	manually)	by	simply	specifying
the		-PnoServer		profile,	e.g.:

#	running	an	example	without	running	the	server

mvn	verify	-PnoServer

Also	under		./target		there	will	be	a	script	repeating	the	commands	to	create	each	server.	Here	is	the		create-server0.sh		generated	by
the		Queue		example.	This	is	useful	to	see	exactly	what	command(s)	are	required	to	configure	the	server(s).

#	These	are	the	commands	used	to	create	server0

/myInstallDirectory/apache-artemis-1.1.0/bin/artemis	create	--allow-anonymous	--silent	--force	--no-web	--user	guest	--passwor

d	guest	--role	guest	--port-offset	0	--data	./data	--allow-anonymous	--no-autotune	--verbose	/myInstallDirectory/apache-artemi

s-1.1.0/examples/features/standard/queue/target/server0

Several	examples	use	UDP	clustering	which	may	not	work	in	your	environment	by	default.	On	linux	the	command	would	be:

route	add	-net	224.0.0.0	netmask	240.0.0.0	dev	lo

This	command	should	be	run	as	root.	This	will	redirect	any	traffic	directed	to		224.0.0.0		to	the	loopback	interface.	On	Mac	OS	X,	the
command	is	slightly	different:

sudo	route	add	224.0.0.0	127.0.0.1	-netmask	240.0.0.0

All	the	examples	use	the	Maven	plugin,	which	can	be	useful	for	running	your	test	servers	as	well.

Examples

34

This	is	the	common	output	when	running	an	example.	On	this	case	taken	from	the		Queue		example:

[INFO]	Scanning	for	projects...

[INFO]

[INFO]	--

[INFO]	Building	ActiveMQ	Artemis	JMS	Queue	Example	1.1.0

[INFO]	--

[INFO]

[INFO]	---	maven-enforcer-plugin:1.4:enforce	(enforce-java)	@	queue	---

[INFO]

[INFO]	---	maven-remote-resources-plugin:1.5:process	(default)	@	queue	---

[INFO]

[INFO]	---	maven-resources-plugin:2.6:resources	(default-resources)	@	queue	---

[INFO]	Using	'UTF-8'	encoding	to	copy	filtered	resources.

[INFO]	Copying	1	resource

[INFO]	Copying	3	resources

[INFO]

[INFO]	---	maven-compiler-plugin:3.1:compile	(default-compile)	@	queue	---

[INFO]	Changes	detected	-	recompiling	the	module!

[INFO]	Compiling	1	source	file	to	/work/apache-artemis-1.1.0/examples/features/standard/queue/target/classes

[INFO]

[INFO]	---	maven-checkstyle-plugin:2.16:check	(default)	@	queue	---

[INFO]

[INFO]	---	apache-rat-plugin:0.11:check	(default)	@	queue	---

[INFO]	RAT	will	not	execute	since	it	is	configured	to	be	skipped	via	system	property	'rat.skip'.

[INFO]

[INFO]	---	maven-resources-plugin:2.6:testResources	(default-testResources)	@	queue	---

[INFO]	Using	'UTF-8'	encoding	to	copy	filtered	resources.

[INFO]	skip	non	existing	resourceDirectory	/work/apache-artemis-1.1.0/examples/features/standard/queue/src/test/resources

[INFO]	Copying	3	resources

[INFO]

[INFO]	---	maven-compiler-plugin:3.1:testCompile	(default-testCompile)	@	queue	---

[INFO]	No	sources	to	compile

[INFO]

[INFO]	---	maven-surefire-plugin:2.18.1:test	(default-test)	@	queue	---

[INFO]

[INFO]	---	maven-jar-plugin:2.4:jar	(default-jar)	@	queue	---

[INFO]	Building	jar:	/work/apache-artemis-1.1.0/examples/features/standard/queue/target/queue-1.1.0.jar

[INFO]

[INFO]	---	maven-site-plugin:3.3:attach-descriptor	(attach-descriptor)	@	queue	---

[INFO]

[INFO]	>>>	maven-source-plugin:2.2.1:jar	(attach-sources)	>	generate-sources	@	queue	>>>

[INFO]

[INFO]	---	maven-enforcer-plugin:1.4:enforce	(enforce-java)	@	queue	---

[INFO]

[INFO]	<<<	maven-source-plugin:2.2.1:jar	(attach-sources)	<	generate-sources	@	queue	<<<

[INFO]

[INFO]	---	maven-source-plugin:2.2.1:jar	(attach-sources)	@	queue	---

[INFO]	Building	jar:	/work/apache-artemis-1.1.0/examples/features/standard/queue/target/queue-1.1.0-sources.jar

[INFO]

[INFO]	>>>	maven-source-plugin:2.2.1:jar	(default)	>	generate-sources	@	queue	>>>

[INFO]

[INFO]	---	maven-enforcer-plugin:1.4:enforce	(enforce-java)	@	queue	---

[INFO]

[INFO]	<<<	maven-source-plugin:2.2.1:jar	(default)	<	generate-sources	@	queue	<<<

[INFO]

[INFO]	---	maven-source-plugin:2.2.1:jar	(default)	@	queue	---

[INFO]

[INFO]	---	artemis-maven-plugin:1.1.0:create	(create)	@	queue	---

[INFO]	Local							id:	local

						url:	file:///Users/apacheuser/.m2/repository/

			layout:	default

snapshots:	[enabled	=>	true,	update	=>	always]

	releases:	[enabled	=>	true,	update	=>	always]

[INFO]	Entries.size	2

[INFO]	...	key=project	=	MavenProject:	org.apache.activemq.examples.broker:queue:1.1.0	@	/work/apache-artemis-1.1.0/examples/f

eatures/standard/queue/pom.xml

[INFO]	...	key=pluginDescriptor	=	Component	Descriptor:	role:	'org.apache.maven.plugin.Mojo',	implementation:	'org.apache.acti

vemq.artemis.maven.ArtemisCLIPlugin',	role	hint:	'org.apache.activemq:artemis-maven-plugin:1.1.0:cli'

role:	'org.apache.maven.plugin.Mojo',	implementation:	'org.apache.activemq.artemis.maven.ArtemisCreatePlugin',	role	hint:	'org

Examples

35

.apache.activemq:artemis-maven-plugin:1.1.0:create'

role:	'org.apache.maven.plugin.Mojo',	implementation:	'org.apache.activemq.artemis.maven.ArtemisClientPlugin',	role	hint:	'org

.apache.activemq:artemis-maven-plugin:1.1.0:runClient'

Executing	org.apache.activemq.artemis.cli.commands.Create	create	--allow-anonymous	--silent	--force	--no-web	--user	guest	--pa

ssword	guest	--role	guest	--port-offset	0	--data	./data	--allow-anonymous	--no-autotune	--verbose	/work/apache-artemis-1.1.0/e

xamples/features/standard/queue/target/server0

Home::/work/apache-artemis-1.1.0/examples/features/standard/queue/../../../..,	Instance::.

Creating	ActiveMQ	Artemis	instance	at:	/work/apache-artemis-1.1.0/examples/features/standard/queue/target/server0

You	can	now	start	the	broker	by	executing:

			"/work/apache-artemis-1.1.0/examples/features/standard/queue/target/server0/bin/artemis"	run

Or	you	can	run	the	broker	in	the	background	using:

			"/work/apache-artemis-1.1.0/examples/features/standard/queue/target/server0/bin/artemis-service"	start

[INFO]	###

[INFO]	create-server0.sh	created	with	commands	to	reproduce	server0

[INFO]	under	/work/apache-artemis-1.1.0/examples/features/standard/queue/target

[INFO]	###

[INFO]

[INFO]	---	artemis-maven-plugin:1.1.0:cli	(start)	@	queue	---

[INFO]	awaiting	server	to	start

[INFO]	awaiting	server	to	start

server-out:					_								_															_

server-out:				/	\		____|	|_		___	__		__(_)	_____

server-out:			/	_	\|		_	\	__|/	_	\		\/		|	|/		__/

server-out:		/	___	\	|	\/	|_/		__/	|\/|	|	|___	\

server-out:	/_/			_\|			______|_|		|_|_|/___	/

server-out:	Apache	ActiveMQ	Artemis	1.1.0

server-out:

server-out:

server-out:17:30:25,091	INFO		[org.apache.activemq.artemis.integration.bootstrap]	AMQ101000:	Starting	ActiveMQ	Artemis	Server

server-out:17:30:25,120	INFO		[org.apache.activemq.artemis.core.server]	AMQ221000:	live	Message	Broker	is	starting	with	config

uration	Broker	Configuration	(clustered=false,journalDirectory=./data/journal,bindingsDirectory=./data/bindings,largeMessagesD

irectory=./data/large-messages,pagingDirectory=./data/paging)

server-out:17:30:25,152	INFO		[org.apache.activemq.artemis.core.server]	AMQ221013:	Using	NIO	Journal

server-out:17:30:25,195	INFO		[org.apache.activemq.artemis.core.server]	AMQ221043:	Protocol	module	found:	[artemis-server].	Ad

ding	protocol	support	for:	CORE

server-out:17:30:25,199	INFO		[org.apache.activemq.artemis.core.server]	AMQ221043:	Protocol	module	found:	[artemis-amqp-protoc

ol].	Adding	protocol	support	for:	AMQP

server-out:17:30:25,209	INFO		[org.apache.activemq.artemis.core.server]	AMQ221043:	Protocol	module	found:	[artemis-hornetq-pro

tocol].	Adding	protocol	support	for:	HORNETQ

server-out:17:30:25,211	INFO		[org.apache.activemq.artemis.core.server]	AMQ221043:	Protocol	module	found:	[artemis-mqtt-protoc

ol].	Adding	protocol	support	for:	MQTT

server-out:17:30:25,214	INFO		[org.apache.activemq.artemis.core.server]	AMQ221043:	Protocol	module	found:	[artemis-openwire-pr

otocol].	Adding	protocol	support	for:	OPENWIRE

server-out:17:30:25,335	INFO		[org.apache.activemq.artemis.core.server]	AMQ221043:	Protocol	module	found:	[artemis-stomp-proto

col].	Adding	protocol	support	for:	STOMP

[INFO]	awaiting	server	to	start

server-out:17:30:25,781	INFO		[org.apache.activemq.artemis.core.server]	AMQ221003:	trying	to	deploy	queue	jms.queue.DLQ

server-out:17:30:25,835	INFO		[org.apache.activemq.artemis.core.server]	AMQ221003:	trying	to	deploy	queue	jms.queue.ExpiryQueu

e

server-out:17:30:25,933	INFO		[org.apache.activemq.artemis.core.server]	AMQ221020:	Started	Acceptor	at	0.0.0.0:61616	for	proto

cols	[CORE,MQTT,AMQP,HORNETQ,STOMP,OPENWIRE]

server-out:17:30:25,936	INFO		[org.apache.activemq.artemis.core.server]	AMQ221020:	Started	Acceptor	at	0.0.0.0:5445	for	protoc

ols	[HORNETQ,STOMP]

server-out:17:30:25,939	INFO		[org.apache.activemq.artemis.core.server]	AMQ221020:	Started	Acceptor	at	0.0.0.0:5672	for	protoc

ols	[AMQP]

server-out:17:30:25,944	INFO		[org.apache.activemq.artemis.core.server]	AMQ221020:	Started	Acceptor	at	0.0.0.0:1883	for	protoc

ols	[MQTT]

server-out:17:30:25,948	INFO		[org.apache.activemq.artemis.core.server]	AMQ221020:	Started	Acceptor	at	0.0.0.0:61613	for	proto

cols	[STOMP]

server-out:17:30:25,949	INFO		[org.apache.activemq.artemis.core.server]	AMQ221007:	Server	is	now	live

server-out:17:30:25,949	INFO		[org.apache.activemq.artemis.core.server]	AMQ221001:	Apache	ActiveMQ	Artemis	Message	Broker	vers

ion	1.1.0	[nodeID=a855176b-50f0-11e5-937e-2fe9bb000966]

[INFO]	Server	started

[INFO]

[INFO]	---	artemis-maven-plugin:1.1.0:runClient	(runClient)	@	queue	---

Sent	message:	This	is	a	text	message

Examples

36

Received	message:	This	is	a	text	message

[INFO]

[INFO]	---	artemis-maven-plugin:1.1.0:cli	(stop)	@	queue	---

server-out:17:30:27,476	INFO		[org.apache.activemq.artemis.core.server]	AMQ221002:	Apache	ActiveMQ	Artemis	Message	Broker	vers

ion	1.0.1-SNA

[INFO]	--

[INFO]	BUILD	SUCCESS

[INFO]	--

[INFO]	Total	time:	7.840	s

[INFO]	Finished	at:	2015-09-01T17:30:27-04:00

[INFO]	Final	Memory:	42M/508M

[INFO]	--

List
This	includes	a	preview	list	of	a	few	examples	that	we	distribute	with	Artemis.	Please	refer	to	the	distribution	for	a	more	accurate	list.

Applet
This	example	shows	you	how	to	send	and	receive	JMS	messages	from	an	Applet.

Application-Layer	Failover
Apache	ActiveMQ	Artemis	also	supports	Application-Layer	failover,	useful	in	the	case	that	replication	is	not	enabled	on	the	server
side.

With	Application-Layer	failover,	it's	up	to	the	application	to	register	a	JMS		ExceptionListener		with	Apache	ActiveMQ	Artemis
which	will	be	called	by	Apache	ActiveMQ	Artemis	in	the	event	that	connection	failure	is	detected.

The	code	in	the		ExceptionListener		then	recreates	the	JMS	connection,	session,	etc	on	another	node	and	the	application	can	continue.

Application-layer	failover	is	an	alternative	approach	to	High	Availability	(HA).	Application-layer	failover	differs	from	automatic
failover	in	that	some	client	side	coding	is	required	in	order	to	implement	this.	Also,	with	Application-layer	failover,	since	the	old	session
object	dies	and	a	new	one	is	created,	any	uncommitted	work	in	the	old	session	will	be	lost,	and	any	unacknowledged	messages	might	be
redelivered.

Core	Bridge	Example

The		bridge		example	demonstrates	a	core	bridge	deployed	on	one	server,	which	consumes	messages	from	a	local	queue	and	forwards
them	to	an	address	on	a	second	server.

Core	bridges	are	used	to	create	message	flows	between	any	two	Apache	ActiveMQ	Artemis	servers	which	are	remotely	separated.	Core
bridges	are	resilient	and	will	cope	with	temporary	connection	failure	allowing	them	to	be	an	ideal	choice	for	forwarding	over	unreliable
connections,	e.g.	a	WAN.

Browser
The		browser		example	shows	you	how	to	use	a	JMS		QueueBrowser		with	Apache	ActiveMQ	Artemis.

Queues	are	a	standard	part	of	JMS,	please	consult	the	JMS	1.1	specification	for	full	details.

A		QueueBrowser		is	used	to	look	at	messages	on	the	queue	without	removing	them.	It	can	scan	the	entire	content	of	a	queue	or	only
messages	matching	a	message	selector.

Examples

37

Client	Kickoff

The		client-kickoff		example	shows	how	to	terminate	client	connections	given	an	IP	address	using	the	JMX	management	API.

Client	side	failover	listener

The		client-side-failoverlistener		example	shows	how	to	register	a	listener	to	monitor	failover	events

Client-Side	Load-Balancing

The		client-side-load-balancing		example	demonstrates	how	sessions	created	from	a	single	JMS		Connection		can	be	created	to	different
nodes	of	the	cluster.	In	other	words	it	demonstrates	how	Apache	ActiveMQ	Artemis	does	client-side	load-balancing	of	sessions	across
the	cluster.

Clustered	Durable	Subscription

This	example	demonstrates	a	clustered	JMS	durable	subscription

Clustered	Grouping

This	is	similar	to	the	message	grouping	example	except	that	it	demonstrates	it	working	over	a	cluster.	Messages	sent	to	different	nodes
with	the	same	group	id	will	be	sent	to	the	same	node	and	the	same	consumer.

Clustered	Queue

The		clustered-queue		example	demonstrates	a	JMS	queue	deployed	on	two	different	nodes.	The	two	nodes	are	configured	to	form	a
cluster.	We	then	create	a	consumer	for	the	queue	on	each	node,	and	we	create	a	producer	on	only	one	of	the	nodes.	We	then	send	some
messages	via	the	producer,	and	we	verify	that	both	consumers	receive	the	sent	messages	in	a	round-robin	fashion.

Clustering	with	JGroups

The		clustered-jgroups		example	demonstrates	how	to	form	a	two	node	cluster	using	JGroups	as	its	underlying	topology	discovery
technique,	rather	than	the	default	UDP	broadcasting.	We	then	create	a	consumer	for	the	queue	on	each	node,	and	we	create	a	producer	on
only	one	of	the	nodes.	We	then	send	some	messages	via	the	producer,	and	we	verify	that	both	consumers	receive	the	sent	messages	in	a
round-robin	fashion.

Clustered	Standalone
The		clustered-standalone		example	demonstrates	how	to	configure	and	starts	3	cluster	nodes	on	the	same	machine	to	form	a	cluster.	A
subscriber	for	a	JMS	topic	is	created	on	each	node,	and	we	create	a	producer	on	only	one	of	the	nodes.	We	then	send	some	messages	via
the	producer,	and	we	verify	that	the	3	subscribers	receive	all	the	sent	messages.

Clustered	Static	Discovery
This	example	demonstrates	how	to	configure	a	cluster	using	a	list	of	connectors	rather	than	UDP	for	discovery

Examples

38

Clustered	Static	Cluster	One	Way

This	example	demonstrates	how	to	set	up	a	cluster	where	cluster	connections	are	one	way,	i.e.	server	A	->	Server	B	->	Server	C

Clustered	Topic

The		clustered-topic		example	demonstrates	a	JMS	topic	deployed	on	two	different	nodes.	The	two	nodes	are	configured	to	form	a
cluster.	We	then	create	a	subscriber	on	the	topic	on	each	node,	and	we	create	a	producer	on	only	one	of	the	nodes.	We	then	send	some
messages	via	the	producer,	and	we	verify	that	both	subscribers	receive	all	the	sent	messages.

Message	Consumer	Rate	Limiting

With	Apache	ActiveMQ	Artemis	you	can	specify	a	maximum	consume	rate	at	which	a	JMS	MessageConsumer	will	consume	messages.
This	can	be	specified	when	creating	or	deploying	the	connection	factory.

If	this	value	is	specified	then	Apache	ActiveMQ	Artemis	will	ensure	that	messages	are	never	consumed	at	a	rate	higher	than	the
specified	rate.	This	is	a	form	of	consumer	throttling.

Dead	Letter
The		dead-letter		example	shows	you	how	to	define	and	deal	with	dead	letter	messages.	Messages	can	be	delivered	unsuccessfully	(e.g.
if	the	transacted	session	used	to	consume	them	is	rolled	back).

Such	a	message	goes	back	to	the	JMS	destination	ready	to	be	redelivered.	However,	this	means	it	is	possible	for	a	message	to	be
delivered	again	and	again	without	any	success	and	remain	in	the	destination,	clogging	the	system.

To	prevent	this,	messaging	systems	define	dead	letter	messages:	after	a	specified	unsuccessful	delivery	attempts,	the	message	is	removed
from	the	destination	and	put	instead	in	a	dead	letter	destination	where	they	can	be	consumed	for	further	investigation.

Delayed	Redelivery
The		delayed-redelivery		example	demonstrates	how	Apache	ActiveMQ	Artemis	can	be	configured	to	provide	a	delayed	redelivery	in
the	case	a	message	needs	to	be	redelivered.

Delaying	redelivery	can	often	be	useful	in	the	case	that	clients	regularly	fail	or	roll-back.	Without	a	delayed	redelivery,	the	system	can
get	into	a	"thrashing"	state,	with	delivery	being	attempted,	the	client	rolling	back,	and	delivery	being	re-attempted	in	quick	succession,
using	up	valuable	CPU	and	network	resources.

Divert

Apache	ActiveMQ	Artemis	diverts	allow	messages	to	be	transparently	"diverted"	or	copied	from	one	address	to	another	with	just	some
simple	configuration	defined	on	the	server	side.

Durable	Subscription

The		durable-subscription		example	shows	you	how	to	use	a	durable	subscription	with	Apache	ActiveMQ	Artemis.	Durable
subscriptions	are	a	standard	part	of	JMS,	please	consult	the	JMS	1.1	specification	for	full	details.

Unlike	non-durable	subscriptions,	the	key	function	of	durable	subscriptions	is	that	the	messages	contained	in	them	persist	longer	than
the	lifetime	of	the	subscriber	-	i.e.	they	will	accumulate	messages	sent	to	the	topic	even	if	there	is	no	active	subscriber	on	them.	They
will	also	survive	server	restarts	or	crashes.	Note	that	for	the	messages	to	be	persisted,	the	messages	sent	to	them	must	be	marked	as

Examples

39

durable	messages.

Embedded

The		embedded		example	shows	how	to	embed	JMS	within	your	own	code	using	POJO	instantiation	and	no	config	files.

Embedded	Simple

The		embedded		example	shows	how	to	embed	JMS	within	your	own	code	using	regular	Apache	ActiveMQ	Artemis	XML	files.

Message	Expiration

The		expiry		example	shows	you	how	to	define	and	deal	with	message	expiration.	Messages	can	be	retained	in	the	messaging	system	for
a	limited	period	of	time	before	being	removed.	JMS	specification	states	that	clients	should	not	receive	messages	that	have	been	expired
(but	it	does	not	guarantee	this	will	not	happen).

Apache	ActiveMQ	Artemis	can	assign	an	expiry	address	to	a	given	queue	so	that	when	messages	are	expired,	they	are	removed	from	the
queue	and	sent	to	the	expiry	address.	These	"expired"	messages	can	later	be	consumed	from	the	expiry	address	for	further	inspection.

Apache	ActiveMQ	Artemis	Resource	Adapter	example

This	examples	shows	how	to	build	the	activemq	resource	adapters	a	rar	for	deployment	in	other	Application	Server's

HTTP	Transport

The		http-transport		example	shows	you	how	to	configure	Apache	ActiveMQ	Artemis	to	use	the	HTTP	protocol	as	its	transport
layer.

Instantiate	JMS	Objects	Directly

Usually,	JMS	Objects	such	as		ConnectionFactory	,		Queue		and		Topic		instances	are	looked	up	from	JNDI	before	being	used	by	the
client	code.	This	objects	are	called	"administered	objects"	in	JMS	terminology.

However,	in	some	cases	a	JNDI	server	may	not	be	available	or	desired.	To	come	to	the	rescue	Apache	ActiveMQ	Artemis	also	supports
the	direct	instantiation	of	these	administered	objects	on	the	client	side	so	you	don't	have	to	use	JNDI	for	JMS.

Interceptor

Apache	ActiveMQ	Artemis	allows	an	application	to	use	an	interceptor	to	hook	into	the	messaging	system.	Interceptors	allow	you	to
handle	various	message	events	in	Apache	ActiveMQ	Artemis.

JAAS

The		jaas		example	shows	you	how	to	configure	Apache	ActiveMQ	Artemis	to	use	JAAS	for	security.	Apache	ActiveMQ	Artemis	can
leverage	JAAS	to	delegate	user	authentication	and	authorization	to	existing	security	infrastructure.

JMS	Auto	Closable

Examples

40

The		jms-auto-closeable		example	shows	how	JMS	resources,	such	as	connections,	sessions	and	consumers,	in	JMS	2	can	be
automatically	closed	on	error.

JMS	Completion	Listener

The		jms-completion-listener		example	shows	how	to	send	a	message	asynchronously	to	Apache	ActiveMQ	Artemis	and	use	a
CompletionListener	to	be	notified	of	the	Broker	receiving	it.

JMS	Bridge

The		jms-brigde		example	shows	how	to	setup	a	bridge	between	two	standalone	Apache	ActiveMQ	Artemis	servers.

JMS	Context

The		jms-context		example	shows	how	to	send	and	receive	a	message	to	a	JMS	Queue	using	Apache	ActiveMQ	Artemis	by	using	a
JMS	Context.

A	JMSContext	is	part	of	JMS	2.0	and	combines	the	JMS	Connection	and	Session	Objects	into	a	simple	Interface.

JMS	Shared	Consumer

The		jms-shared-consumer		example	shows	you	how	can	use	shared	consumers	to	share	a	subscription	on	a	topic.	In	JMS	1.1	this	was
not	allowed	and	so	caused	a	scalability	issue.	In	JMS	2	this	restriction	has	been	lifted	so	you	can	share	the	load	across	different	threads
and	connections.

JMX	Management

The		jmx		example	shows	how	to	manage	Apache	ActiveMQ	Artemis	using	JMX.

Large	Message

The		large-message		example	shows	you	how	to	send	and	receive	very	large	messages	with	Apache	ActiveMQ	Artemis.	Apache
ActiveMQ	Artemis	supports	the	sending	and	receiving	of	huge	messages,	much	larger	than	can	fit	in	available	RAM	on	the	client	or
server.	Effectively	the	only	limit	to	message	size	is	the	amount	of	disk	space	you	have	on	the	server.

Large	messages	are	persisted	on	the	server	so	they	can	survive	a	server	restart.	In	other	words	Apache	ActiveMQ	Artemis	doesn't	just
do	a	simple	socket	stream	from	the	sender	to	the	consumer.

Last-Value	Queue

The		last-value-queue		example	shows	you	how	to	define	and	deal	with	last-value	queues.	Last-value	queues	are	special	queues	which
discard	any	messages	when	a	newer	message	with	the	same	value	for	a	well-defined	last-value	property	is	put	in	the	queue.	In	other
words,	a	last-value	queue	only	retains	the	last	value.

A	typical	example	for	last-value	queue	is	for	stock	prices,	where	you	are	only	interested	by	the	latest	price	for	a	particular	stock.

Management

Examples

41

The		management		example	shows	how	to	manage	Apache	ActiveMQ	Artemis	using	JMS	Messages	to	invoke	management	operations	on
the	server.

Management	Notification

The		management-notification		example	shows	how	to	receive	management	notifications	from	Apache	ActiveMQ	Artemis	using	JMS
messages.	Apache	ActiveMQ	Artemis	servers	emit	management	notifications	when	events	of	interest	occur	(consumers	are	created	or
closed,	addresses	are	created	or	deleted,	security	authentication	fails,	etc.).

Message	Counter

The		message-counters		example	shows	you	how	to	use	message	counters	to	obtain	message	information	for	a	JMS	queue.

Message	Group

The		message-group		example	shows	you	how	to	configure	and	use	message	groups	with	Apache	ActiveMQ	Artemis.	Message	groups
allow	you	to	pin	messages	so	they	are	only	consumed	by	a	single	consumer.	Message	groups	are	sets	of	messages	that	has	the	following
characteristics:

Messages	in	a	message	group	share	the	same	group	id,	i.e.	they	have	same	JMSXGroupID	string	property	values

The	consumer	that	receives	the	first	message	of	a	group	will	receive	all	the	messages	that	belongs	to	the	group

Message	Group
The		message-group2		example	shows	you	how	to	configure	and	use	message	groups	with	Apache	ActiveMQ	Artemis	via	a	connection
factory.

Message	Priority
Message	Priority	can	be	used	to	influence	the	delivery	order	for	messages.

It	can	be	retrieved	by	the	message's	standard	header	field	'JMSPriority'	as	defined	in	JMS	specification	version	1.1.

The	value	is	of	type	integer,	ranging	from	0	(the	lowest)	to	9	(the	highest).	When	messages	are	being	delivered,	their	priorities	will	effect
their	order	of	delivery.	Messages	of	higher	priorities	will	likely	be	delivered	before	those	of	lower	priorities.

Messages	of	equal	priorities	are	delivered	in	the	natural	order	of	their	arrival	at	their	destinations.	Please	consult	the	JMS	1.1
specification	for	full	details.

Multiple	Failover

This	example	demonstrates	how	to	set	up	a	live	server	with	multiple	backups

Multiple	Failover	Failback

This	example	demonstrates	how	to	set	up	a	live	server	with	multiple	backups	but	forcing	failover	back	to	the	original	live	server

No	Consumer	Buffering

Examples

42

By	default,	Apache	ActiveMQ	Artemis	consumers	buffer	messages	from	the	server	in	a	client	side	buffer	before	you	actually	receive
them	on	the	client	side.	This	improves	performance	since	otherwise	every	time	you	called	receive()	or	had	processed	the	last	message	in
a		MessageListener	onMessage()		method,	the	Apache	ActiveMQ	Artemis	client	would	have	to	go	the	server	to	request	the	next	message,
which	would	then	get	sent	to	the	client	side,	if	one	was	available.

This	would	involve	a	network	round	trip	for	every	message	and	reduce	performance.	Therefore,	by	default,	Apache	ActiveMQ	Artemis
pre-fetches	messages	into	a	buffer	on	each	consumer.

In	some	case	buffering	is	not	desirable,	and	Apache	ActiveMQ	Artemis	allows	it	to	be	switched	off.	This	example	demonstrates	that.

Non-Transaction	Failover	With	Server	Data	Replication
The		non-transaction-failover		example	demonstrates	two	servers	coupled	as	a	live-backup	pair	for	high	availability	(HA),	and	a	client
using	a	non-transacted	JMS	session	failing	over	from	live	to	backup	when	the	live	server	is	crashed.

Apache	ActiveMQ	Artemis	implements	failover	of	client	connections	between	live	and	backup	servers.	This	is	implemented	by	the
replication	of	state	between	live	and	backup	nodes.	When	replication	is	configured	and	a	live	node	crashes,	the	client	connections	can
carry	and	continue	to	send	and	consume	messages.	When	non-transacted	sessions	are	used,	once	and	only	once	message	delivery	is	not
guaranteed	and	it	is	possible	that	some	messages	will	be	lost	or	delivered	twice.

OpenWire

The		Openwire		example	shows	how	to	configure	an	Apache	ActiveMQ	Artemis	server	to	communicate	with	an	Apache	ActiveMQ
Artemis	JMS	client	that	uses	open-wire	protocol.

You	will	find	the	queue	example	for	open	wire,	and	the	chat	example.

Paging
The		paging		example	shows	how	Apache	ActiveMQ	Artemis	can	support	huge	queues	even	when	the	server	is	running	in	limited
RAM.	It	does	this	by	transparently	paging	messages	to	disk,	and	depaging	them	when	they	are	required.

Pre-Acknowledge
Standard	JMS	supports	three	acknowledgement	modes:	AUTO_ACKNOWLEDGE	,		CLIENT_ACKNOWLEDGE	,	and		DUPS_OK_ACKNOWLEDGE	.	For	a	full
description	on	these	modes	please	consult	the	JMS	specification,	or	any	JMS	tutorial.

All	of	these	standard	modes	involve	sending	acknowledgements	from	the	client	to	the	server.	However	in	some	cases,	you	really	don't
mind	losing	messages	in	event	of	failure,	so	it	would	make	sense	to	acknowledge	the	message	on	the	server	before	delivering	it	to	the
client.	This	example	demonstrates	how	Apache	ActiveMQ	Artemis	allows	this	with	an	extra	acknowledgement	mode.

Message	Producer	Rate	Limiting

The		producer-rte-limit		example	demonstrates	how,	with	Apache	ActiveMQ	Artemis,	you	can	specify	a	maximum	send	rate	at	which
a	JMS	message	producer	will	send	messages.

Queue

A	simple	example	demonstrating	a	JMS	queue.

Message	Redistribution

Examples

43

The		queue-message-redistribution		example	demonstrates	message	redistribution	between	queues	with	the	same	name	deployed	in
different	nodes	of	a	cluster.

Queue	Requestor

A	simple	example	demonstrating	a	JMS	queue	requestor.

Queue	with	Message	Selector

The		queue-selector		example	shows	you	how	to	selectively	consume	messages	using	message	selectors	with	queue	consumers.

Reattach	Node	example

The		Reattach	Node		example	shows	how	a	client	can	try	to	reconnect	to	the	same	server	instead	of	failing	the	connection	immediately
and	notifying	any	user	ExceptionListener	objects.	Apache	ActiveMQ	Artemis	can	be	configured	to	automatically	retry	the	connection,
and	reattach	to	the	server	when	it	becomes	available	again	across	the	network.

Replicated	Failback	example

An	example	showing	how	failback	works	when	using	replication,	In	this	example	a	live	server	will	replicate	all	its	Journal	to	a	backup
server	as	it	updates	it.	When	the	live	server	crashes	the	backup	takes	over	from	the	live	server	and	the	client	reconnects	and	carries	on
from	where	it	left	off.

Replicated	Failback	static	example

An	example	showing	how	failback	works	when	using	replication,	but	this	time	with	static	connectors

Replicated	multiple	failover	example

An	example	showing	how	to	configure	multiple	backups	when	using	replication

Replicated	Failover	transaction	example

An	example	showing	how	failover	works	with	a	transaction	when	using	replication

Request-Reply	example

A	simple	example	showing	the	JMS	request-response	pattern.

Scheduled	Message

The		scheduled-message		example	shows	you	how	to	send	a	scheduled	message	to	a	JMS	Queue	with	Apache	ActiveMQ	Artemis.
Scheduled	messages	won't	get	delivered	until	a	specified	time	in	the	future.

Security

Examples

44

The		security		example	shows	you	how	configure	and	use	role	based	queue	security	with	Apache	ActiveMQ	Artemis.

Send	Acknowledgements

The		send-acknowledgements		example	shows	you	how	to	use	Apache	ActiveMQ	Artemis's	advanced	asynchronous	send
acknowledgements	feature	to	obtain	acknowledgement	from	the	server	that	sends	have	been	received	and	processed	in	a	separate	stream
to	the	sent	messages.

Spring	Integration

This	example	shows	how	to	use	embedded	JMS	using	Apache	ActiveMQ	Artemis's	Spring	integration.

SSL	Transport

The		ssl-enabled		shows	you	how	to	configure	SSL	with	Apache	ActiveMQ	Artemis	to	send	and	receive	message.

Static	Message	Selector

The		static-selector		example	shows	you	how	to	configure	an	Apache	ActiveMQ	Artemis	core	queue	with	static	message	selectors
(filters).

Static	Message	Selector	Using	JMS

The		static-selector-jms		example	shows	you	how	to	configure	an	Apache	ActiveMQ	Artemis	queue	with	static	message	selectors
(filters)	using	JMS.

Stomp

The		stomp		example	shows	you	how	to	configure	an	Apache	ActiveMQ	Artemis	server	to	send	and	receive	Stomp	messages.

Stomp1.1

The		stomp		example	shows	you	how	to	configure	an	Apache	ActiveMQ	Artemis	server	to	send	and	receive	Stomp	messages	via	a
Stomp	1.1	connection.

Stomp1.2

The		stomp		example	shows	you	how	to	configure	an	Apache	ActiveMQ	Artemis	server	to	send	and	receive	Stomp	messages	via	a
Stomp	1.2	connection.

Stomp	Over	Web	Sockets

The		stomp-websockets		example	shows	you	how	to	configure	an	Apache	ActiveMQ	Artemis	server	to	send	and	receive	Stomp	messages
directly	from	Web	browsers	(provided	they	support	Web	Sockets).

Symmetric	Cluster

Examples

45

The		symmetric-cluster		example	demonstrates	a	symmetric	cluster	set-up	with	Apache	ActiveMQ	Artemis.

Apache	ActiveMQ	Artemis	has	extremely	flexible	clustering	which	allows	you	to	set-up	servers	in	many	different	topologies.	The	most
common	topology	that	you'll	perhaps	be	familiar	with	if	you	are	used	to	application	server	clustering	is	a	symmetric	cluster.

With	a	symmetric	cluster,	the	cluster	is	homogeneous,	i.e.	each	node	is	configured	the	same	as	every	other	node,	and	every	node	is
connected	to	every	other	node	in	the	cluster.

Temporary	Queue
A	simple	example	demonstrating	how	to	use	a	JMS	temporary	queue.

Topic
A	simple	example	demonstrating	a	JMS	topic.

Topic	Hierarchy
Apache	ActiveMQ	Artemis	supports	topic	hierarchies.	With	a	topic	hierarchy	you	can	register	a	subscriber	with	a	wild-card	and	that
subscriber	will	receive	any	messages	sent	to	an	address	that	matches	the	wild	card.

Topic	Selector	1
The		topic-selector-example1		example	shows	you	how	to	send	message	to	a	JMS	Topic,	and	subscribe	them	using	selectors	with
Apache	ActiveMQ	Artemis.

Topic	Selector	2
The		topic-selector-example2		example	shows	you	how	to	selectively	consume	messages	using	message	selectors	with	topic	consumers.

Transaction	Failover
The		transaction-failover		example	demonstrates	two	servers	coupled	as	a	live-backup	pair	for	high	availability	(HA),	and	a	client
using	a	transacted	JMS	session	failing	over	from	live	to	backup	when	the	live	server	is	crashed.

Apache	ActiveMQ	Artemis	implements	failover	of	client	connections	between	live	and	backup	servers.	This	is	implemented	by	the
sharing	of	a	journal	between	the	servers.	When	a	live	node	crashes,	the	client	connections	can	carry	and	continue	to	send	and	consume
messages.	When	transacted	sessions	are	used,	once	and	only	once	message	delivery	is	guaranteed.

Failover	Without	Transactions

The		stop-server-failover		example	demonstrates	failover	of	the	JMS	connection	from	one	node	to	another	when	the	live	server	crashes
using	a	JMS	non-transacted	session.

Transactional	Session

The		transactional		example	shows	you	how	to	use	a	transactional	Session	with	Apache	ActiveMQ	Artemis.

Examples

46

XA	Heuristic

The		xa-heuristic		example	shows	you	how	to	make	an	XA	heuristic	decision	through	Apache	ActiveMQ	Artemis	Management
Interface.	A	heuristic	decision	is	a	unilateral	decision	to	commit	or	rollback	an	XA	transaction	branch	after	it	has	been	prepared.

XA	Receive

The		xa-receive		example	shows	you	how	message	receiving	behaves	in	an	XA	transaction	in	Apache	ActiveMQ	Artemis.

XA	Send

The		xa-send		example	shows	you	how	message	sending	behaves	in	an	XA	transaction	in	Apache	ActiveMQ	Artemis.

Core	API	Examples
To	run	a	core	example,	simply		cd		into	the	appropriate	example	directory	and	type		ant	

Embedded

The		embedded		example	shows	how	to	embed	the	Apache	ActiveMQ	Artemis	server	within	your	own	code.

Examples

47

Routing	Messages	With	Wild	Cards
Apache	ActiveMQ	Artemis	allows	the	routing	of	messages	via	wildcard	addresses.

If	a	queue	is	created	with	an	address	of	say		queue.news.#		then	it	will	receive	any	messages	sent	to	addresses	that	match	this,	for
instance		queue.news.europe		or		queue.news.usa		or		queue.news.usa.sport	.	If	you	create	a	consumer	on	this	queue,	this	allows	a
consumer	to	consume	messages	which	are	sent	to	a	hierarchy	of	addresses.

Note

In	JMS	terminology	this	allows	"topic	hierarchies"	to	be	created.

To	enable	this	functionality	set	the	property		wild-card-routing-enabled		in	the		broker.xml		file	to		true	.	This	is		true		by	default.

For	more	information	on	the	wild	card	syntax	take	a	look	at	wildcard	syntax	chapter,	also	see	the	topic	hierarchy	example	in	the
examples.

Routing	Messages	With	Wild	Cards

48

Understanding	the	Apache	ActiveMQ	Artemis	Wildcard	Syntax
Apache	ActiveMQ	Artemis	uses	a	specific	syntax	for	representing	wildcards	in	security	settings,	address	settings	and	when	creating
consumers.

The	syntax	is	similar	to	that	used	by	AMQP.

An	Apache	ActiveMQ	Artemis	wildcard	expression	contains	words	delimited	by	the	character	'	.	'	(full	stop).

The	special	characters	'	#	'	and	'	*	'	also	have	special	meaning	and	can	take	the	place	of	a	word.

The	character	'	#	'	means	'match	any	sequence	of	zero	or	more	words'.

The	character	'	*	'	means	'match	a	single	word'.

So	the	wildcard	'news.europe.#'	would	match	'news.europe',	'news.europe.sport',	'news.europe.politics',	and
'news.europe.politics.regional'	but	would	not	match	'news.usa',	'news.usa.sport'	nor	'entertainment'.

The	wildcard	'news.*'	would	match	'news.europe',	but	not	'news.europe.sport'.

The	wildcard	'news.*.sport'	would	match	'news.europe.sport'	and	also	'news.usa.sport',	but	not	'news.europe.politics'.

Understanding	the	Apache	ActiveMQ	Artemis	Wildcard	Syntax

49

http://www.amqp.org

Filter	Expressions
Apache	ActiveMQ	Artemis	provides	a	powerful	filter	language	based	on	a	subset	of	the	SQL	92	expression	syntax.

It	is	the	same	as	the	syntax	used	for	JMS	selectors,	but	the	predefined	identifiers	are	different.	For	documentation	on	JMS	selector
syntax	please	the	JMS	javadoc	for	javax.jms.Message.

Filter	expressions	are	used	in	several	places	in	Apache	ActiveMQ	Artemis

Predefined	Queues.	When	pre-defining	a	queue,	in		broker.xml		in	either	the	core	or	jms	configuration	a	filter	expression	can	be
defined	for	a	queue.	Only	messages	that	match	the	filter	expression	will	enter	the	queue.

Core	bridges	can	be	defined	with	an	optional	filter	expression,	only	matching	messages	will	be	bridged	(see	Core	Bridges).

Diverts	can	be	defined	with	an	optional	filter	expression,	only	matching	messages	will	be	diverted	(see	Diverts).

Filter	are	also	used	programmatically	when	creating	consumers,	queues	and	in	several	places	as	described	in	management.

There	are	some	differences	between	JMS	selector	expressions	and	Apache	ActiveMQ	Artemis	core	filter	expressions.	Whereas	JMS
selector	expressions	operate	on	a	JMS	message,	Apache	ActiveMQ	Artemis	core	filter	expressions	operate	on	a	core	message.

The	following	identifiers	can	be	used	in	a	core	filter	expressions	to	refer	to	attributes	of	the	core	message	in	an	expression:

	AMQPriority	.	To	refer	to	the	priority	of	a	message.	Message	priorities	are	integers	with	valid	values	from		0	-	9	.		0		is	the	lowest
priority	and		9		is	the	highest.	E.g.		AMQPriority	=	3	AND	animal	=	'aardvark'	

	AMQExpiration	.	To	refer	to	the	expiration	time	of	a	message.	The	value	is	a	long	integer.

	AMQDurable	.	To	refer	to	whether	a	message	is	durable	or	not.	The	value	is	a	string	with	valid	values:		DURABLE		or		NON_DURABLE	.

	AMQTimestamp	.	The	timestamp	of	when	the	message	was	created.	The	value	is	a	long	integer.

	AMQSize	.	The	size	of	a	message	in	bytes.	The	value	is	an	integer.

Any	other	identifiers	used	in	core	filter	expressions	will	be	assumed	to	be	properties	of	the	message.

The	JMS	spec	states	that	a	String	property	should	not	get	converted	to	a	numeric	when	used	in	a	selector.	So	for	example,	if	a	message
has	the		age		property	set	to	String		21		then	the	following	selector	should	not	match	it:		age	>	18	.	Since	Apache	ActiveMQ	Artemis
supports	STOMP	clients	which	can	only	send	messages	with	string	properties,	that	restriction	is	a	bit	limiting.	Therefore,	if	you	want
your	filter	expressions	to	auto-convert	String	properties	the	the	appropriate	number	type,	just	prefix	it	with
	convert_string_expressions:	.	If	you	changed	the	filter	expression	in	the	previous	example	to	be		convert_string_expressions:age	>	18	,
then	it	would	match	the	aforementioned	message.

The	JMS	spec	also	states	that	property	identifiers	(and	therefore	the	identifiers	which	are	valid	for	use	in	a	filter	expression)	are	an,
"unlimited-length	sequence	of	letters	and	digits,	the	first	of	which	must	be	a	letter.	A	letter	is	any	character	for	which	the	method
	Character.isJavaLetter		returns		true	.	This	includes		_		and		$.	A	letter	or	digit	is	any	character	for	which	the	method
	Character.isJavaLetterOrDigit		returns		true	."	This	constraint	means	that	hyphens	(i.e.		-)	cannot	be	used.	However,	this	constraint
can	be	overcome	by	using	the		hyphenated_props:		prefix.	For	example,	if	a	message	had	the		foo-bar		property	set	to		0		then	the	filter
expression		hyphenated_props:foo-bar	=	0		would	match	it.

Filter	Expressions

50

http://docs.oracle.com/javaee/6/api/javax/jms/Message.html

Persistence
In	this	chapter	we	will	describe	how	persistence	works	with	Apache	ActiveMQ	Artemis	and	how	to	configure	it.

Apache	ActiveMQ	Artemis	ships	with	two	persistence	options.	The	Apache	ActiveMQ	Artemis	File	journal	which	is	highly
optimized	for	the	messaging	use	case	and	gives	great	performance,	and	also	Apache	Artemis	JDBC	Store,	which	uses	JDBC	to	connect
to	a	database	of	your	choice.	The	JDBC	Store	is	still	under	development,	but	it	is	possible	to	use	it's	journal	features,	(essentially
everything	except	for	paging	and	large	messages).

Apache	ActiveMQ	Artemis	File	Journal	(Default)

An	Apache	ActiveMQ	Artemis	file	journal	is	an	append	only	journal.	It	consists	of	a	set	of	files	on	disk.	Each	file	is	pre-created	to	a
fixed	size	and	initially	filled	with	padding.	As	operations	are	performed	on	the	server,	e.g.	add	message,	update	message,	delete	message,
records	are	appended	to	the	journal.	When	one	journal	file	is	full	we	move	to	the	next	one.

Because	records	are	only	appended,	i.e.	added	to	the	end	of	the	journal	we	minimise	disk	head	movement,	i.e.	we	minimise	random
access	operations	which	is	typically	the	slowest	operation	on	a	disk.

Making	the	file	size	configurable	means	that	an	optimal	size	can	be	chosen,	i.e.	making	each	file	fit	on	a	disk	cylinder.	Modern	disk
topologies	are	complex	and	we	are	not	in	control	over	which	cylinder(s)	the	file	is	mapped	onto	so	this	is	not	an	exact	science.	But	by
minimising	the	number	of	disk	cylinders	the	file	is	using,	we	can	minimise	the	amount	of	disk	head	movement,	since	an	entire	disk
cylinder	is	accessible	simply	by	the	disk	rotating	-	the	head	does	not	have	to	move.

As	delete	records	are	added	to	the	journal,	Apache	ActiveMQ	Artemis	has	a	sophisticated	file	garbage	collection	algorithm	which	can
determine	if	a	particular	journal	file	is	needed	any	more	-	i.e.	has	all	its	data	been	deleted	in	the	same	or	other	files.	If	so,	the	file	can	be
reclaimed	and	re-used.

Apache	ActiveMQ	Artemis	also	has	a	compaction	algorithm	which	removes	dead	space	from	the	journal	and	compresses	up	the	data	so
it	takes	up	less	files	on	disk.

The	journal	also	fully	supports	transactional	operation	if	required,	supporting	both	local	and	XA	transactions.

The	majority	of	the	journal	is	written	in	Java,	however	we	abstract	out	the	interaction	with	the	actual	file	system	to	allow	different
pluggable	implementations.	Apache	ActiveMQ	Artemis	ships	with	two	implementations:

Java	NIO.

The	first	implementation	uses	standard	Java	NIO	to	interface	with	the	file	system.	This	provides	extremely	good	performance	and
runs	on	any	platform	where	there's	a	Java	6+	runtime.

Linux	Asynchronous	IO

The	second	implementation	uses	a	thin	native	code	wrapper	to	talk	to	the	Linux	asynchronous	IO	library	(AIO).	With	AIO,
Apache	ActiveMQ	Artemis	will	be	called	back	when	the	data	has	made	it	to	disk,	allowing	us	to	avoid	explicit	syncs	altogether	and
simply	send	back	confirmation	of	completion	when	AIO	informs	us	that	the	data	has	been	persisted.

Using	AIO	will	typically	provide	even	better	performance	than	using	Java	NIO.

The	AIO	journal	is	only	available	when	running	Linux	kernel	2.6	or	later	and	after	having	installed	libaio	(if	it's	not	already
installed).	For	instructions	on	how	to	install	libaio	please	see	Installing	AIO	section.

Also,	please	note	that	AIO	will	only	work	with	the	following	file	systems:	ext2,	ext3,	ext4,	jfs,	xfs.	With	other	file	systems,	e.g.
NFS	it	may	appear	to	work,	but	it	will	fall	back	to	a	slower	synchronous	behaviour.	Don't	put	the	journal	on	a	NFS	share!

For	more	information	on	libaio	please	see	lib	AIO.

libaio	is	part	of	the	kernel	project.

The	standard	Apache	ActiveMQ	Artemis	core	server	uses	two	instances	of	the	journal:

Persistence

51

http://en.wikipedia.org/wiki/New_I/O

Bindings	journal.

This	journal	is	used	to	store	bindings	related	data.	That	includes	the	set	of	queues	that	are	deployed	on	the	server	and	their
attributes.	It	also	stores	data	such	as	id	sequence	counters.

The	bindings	journal	is	always	a	NIO	journal	as	it	is	typically	low	throughput	compared	to	the	message	journal.

The	files	on	this	journal	are	prefixed	as		activemq-bindings	.	Each	file	has	a		bindings		extension.	File	size	is		1048576	,	and	it	is
located	at	the	bindings	folder.

JMS	journal.

This	journal	instance	stores	all	JMS	related	data,	This	is	basically	any	JMS	Queues,	Topics	and	Connection	Factories	and	any
JNDI	bindings	for	these	resources.

Any	JMS	Resources	created	via	the	management	API	will	be	persisted	to	this	journal.	Any	resources	configured	via	configuration
files	will	not.	The	JMS	Journal	will	only	be	created	if	JMS	is	being	used.

The	files	on	this	journal	are	prefixed	as		activemq-jms	.	Each	file	has	a		jms		extension.	File	size	is		1048576	,	and	it	is	located	at	the
bindings	folder.

Message	journal.

This	journal	instance	stores	all	message	related	data,	including	the	message	themselves	and	also	duplicate-id	caches.

By	default	Apache	ActiveMQ	Artemis	will	try	and	use	an	AIO	journal.	If	AIO	is	not	available,	e.g.	the	platform	is	not	Linux	with
the	correct	kernel	version	or	AIO	has	not	been	installed	then	it	will	automatically	fall	back	to	using	Java	NIO	which	is	available	on
any	Java	platform.

The	files	on	this	journal	are	prefixed	as		activemq-data	.	Each	file	has	a		amq		extension.	File	size	is	by	the	default		10485760	
(configurable),	and	it	is	located	at	the	journal	folder.

For	large	messages,	Apache	ActiveMQ	Artemis	persists	them	outside	the	message	journal.	This	is	discussed	in	Large	Messages.

Apache	ActiveMQ	Artemis	can	also	be	configured	to	page	messages	to	disk	in	low	memory	situations.	This	is	discussed	in	Paging.

If	no	persistence	is	required	at	all,	Apache	ActiveMQ	Artemis	can	also	be	configured	not	to	persist	any	data	at	all	to	storage	as
discussed	in	the	Configuring	the	broker	for	Zero	Persistence	section.

Configuring	the	bindings	journal

The	bindings	journal	is	configured	using	the	following	attributes	in		broker.xml	

	bindings-directory	

This	is	the	directory	in	which	the	bindings	journal	lives.	The	default	value	is		data/bindings	.

	create-bindings-dir	

If	this	is	set	to		true		then	the	bindings	directory	will	be	automatically	created	at	the	location	specified	in		bindings-directory		if	it
does	not	already	exist.	The	default	value	is		true	

Configuring	the	jms	journal

The	jms	config	shares	its	configuration	with	the	bindings	journal.

Configuring	the	message	journal

The	message	journal	is	configured	using	the	following	attributes	in		broker.xml	

	journal-directory	

This	is	the	directory	in	which	the	message	journal	lives.	The	default	value	is		data/journal	.

Persistence

52

For	the	best	performance,	we	recommend	the	journal	is	located	on	its	own	physical	volume	in	order	to	minimise	disk	head
movement.	If	the	journal	is	on	a	volume	which	is	shared	with	other	processes	which	might	be	writing	other	files	(e.g.	bindings
journal,	database,	or	transaction	coordinator)	then	the	disk	head	may	well	be	moving	rapidly	between	these	files	as	it	writes	them,
thus	drastically	reducing	performance.

When	the	message	journal	is	stored	on	a	SAN	we	recommend	each	journal	instance	that	is	stored	on	the	SAN	is	given	its	own	LUN
(logical	unit).

	create-journal-dir	

If	this	is	set	to		true		then	the	journal	directory	will	be	automatically	created	at	the	location	specified	in		journal-directory		if	it
does	not	already	exist.	The	default	value	is		true	

	journal-type	

Valid	values	are		NIO		or		ASYNCIO	.

Choosing		NIO		chooses	the	Java	NIO	journal.	Choosing		ASYNCIO		chooses	the	Linux	asynchronous	IO	journal.	If	you	choose
	ASYNCIO		but	are	not	running	Linux	or	you	do	not	have	libaio	installed	then	Apache	ActiveMQ	Artemis	will	detect	this	and
automatically	fall	back	to	using		NIO	.

	journal-sync-transactional	

If	this	is	set	to	true	then	Apache	ActiveMQ	Artemis	will	make	sure	all	transaction	data	is	flushed	to	disk	on	transaction	boundaries
(commit,	prepare	and	rollback).	The	default	value	is		true	.

	journal-sync-non-transactional	

If	this	is	set	to	true	then	Apache	ActiveMQ	Artemis	will	make	sure	non	transactional	message	data	(sends	and	acknowledgements)
are	flushed	to	disk	each	time.	The	default	value	for	this	is		true	.

	journal-file-size	

The	size	of	each	journal	file	in	bytes.	The	default	value	for	this	is		10485760		bytes	(10MiB).

	journal-min-files	

The	minimum	number	of	files	the	journal	will	maintain.	When	Apache	ActiveMQ	Artemis	starts	and	there	is	no	initial	message
data,	Apache	ActiveMQ	Artemis	will	pre-create		journal-min-files		number	of	files.

Creating	journal	files	and	filling	them	with	padding	is	a	fairly	expensive	operation	and	we	want	to	minimise	doing	this	at	run-time	as
files	get	filled.	By	pre-creating	files,	as	one	is	filled	the	journal	can	immediately	resume	with	the	next	one	without	pausing	to	create
it.

Depending	on	how	much	data	you	expect	your	queues	to	contain	at	steady	state	you	should	tune	this	number	of	files	to	match	that
total	amount	of	data.

	journal-pool-files	

The	system	will	create	as	many	files	as	needed	however	when	reclaiming	files	it	will	shrink	back	to	the		journal-pool-files	.

The	default	to	this	parameter	is	-1,	meaning	it	will	never	delete	files	on	the	journal	once	created.

Notice	that	the	system	can't	grow	infinitely	as	you	are	still	required	to	use	paging	for	destinations	that	can	grow	indefinitely.

Notice:	in	case	you	get	too	many	files	you	can	use	compacting.

	journal-max-io	

Write	requests	are	queued	up	before	being	submitted	to	the	system	for	execution.	This	parameter	controls	the	maximum	number	of
write	requests	that	can	be	in	the	IO	queue	at	any	one	time.	If	the	queue	becomes	full	then	writes	will	block	until	space	is	freed	up.

When	using	NIO,	this	value	should	always	be	equal	to		1	

When	using	AIO,	the	default	should	be		500	.

Persistence

53

The	system	maintains	different	defaults	for	this	parameter	depending	on	whether	it's	NIO	or	AIO	(default	for	NIO	is	1,	default	for
AIO	is	500)

There	is	a	limit	and	the	total	max	AIO	can't	be	higher	than	what	is	configured	at	the	OS	level	(/proc/sys/fs/aio-max-nr)	usually	at
65536.

	journal-buffer-timeout	

Instead	of	flushing	on	every	write	that	requires	a	flush,	we	maintain	an	internal	buffer,	and	flush	the	entire	buffer	either	when	it	is
full,	or	when	a	timeout	expires,	whichever	is	sooner.	This	is	used	for	both	NIO	and	AIO	and	allows	the	system	to	scale	better	with
many	concurrent	writes	that	require	flushing.

This	parameter	controls	the	timeout	at	which	the	buffer	will	be	flushed	if	it	hasn't	filled	already.	AIO	can	typically	cope	with	a
higher	flush	rate	than	NIO,	so	the	system	maintains	different	defaults	for	both	NIO	and	AIO	(default	for	NIO	is	3333333
nanoseconds	-	300	times	per	second,	default	for	AIO	is	500000	nanoseconds	-	ie.	2000	times	per	second).

Note

By	increasing	the	timeout,	you	may	be	able	to	increase	system	throughput	at	the	expense	of	latency,	the	default	parameters
are	chosen	to	give	a	reasonable	balance	between	throughput	and	latency.

	journal-buffer-size	

The	size	of	the	timed	buffer	on	AIO.	The	default	value	is		490KiB	.

	journal-compact-min-files	

The	minimal	number	of	files	before	we	can	consider	compacting	the	journal.	The	compacting	algorithm	won't	start	until	you	have	at
least		journal-compact-min-files	

Setting	this	to	0	will	disable	the	feature	to	compact	completely.	This	could	be	dangerous	though	as	the	journal	could	grow
indefinitely.	Use	it	wisely!

The	default	for	this	parameter	is	`10`

	journal-compact-percentage	

The	threshold	to	start	compacting.	When	less	than	this	percentage	is	considered	live	data,	we	start	compacting.	Note	also	that
compacting	won't	kick	in	until	you	have	at	least		journal-compact-min-files		data	files	on	the	journal

The	default	for	this	parameter	is		30	

	journal-datasync		(default:	true)

This	will	disable	the	use	of	fdatasync	on	journal	writes.

An	important	note	on	disabling	disk	write	cache.

Warning

Most	disks	contain	hardware	write	caches.	A	write	cache	can	increase	the	apparent	performance	of	the	disk	because	writes	just
go	into	the	cache	and	are	then	lazily	written	to	the	disk	later.

This	happens	irrespective	of	whether	you	have	executed	a	fsync()	from	the	operating	system	or	correctly	synced	data	from
inside	a	Java	program!

By	default	many	systems	ship	with	disk	write	cache	enabled.	This	means	that	even	after	syncing	from	the	operating	system
there	is	no	guarantee	the	data	has	actually	made	it	to	disk,	so	if	a	failure	occurs,	critical	data	can	be	lost.

Some	more	expensive	disks	have	non	volatile	or	battery	backed	write	caches	which	won't	necessarily	lose	data	on	event	of	failure,
but	you	need	to	test	them!

Persistence

54

If	your	disk	does	not	have	an	expensive	non	volatile	or	battery	backed	cache	and	it's	not	part	of	some	kind	of	redundant	array
(e.g.	RAID),	and	you	value	your	data	integrity	you	need	to	make	sure	disk	write	cache	is	disabled.

Be	aware	that	disabling	disk	write	cache	can	give	you	a	nasty	shock	performance	wise.	If	you've	been	used	to	using	disks	with
write	cache	enabled	in	their	default	setting,	unaware	that	your	data	integrity	could	be	compromised,	then	disabling	it	will	give	you
an	idea	of	how	fast	your	disk	can	perform	when	acting	really	reliably.

On	Linux	you	can	inspect	and/or	change	your	disk's	write	cache	settings	using	the	tools		hdparm		(for	IDE	disks)	or		sdparm		or
	sginfo		(for	SDSI/SATA	disks)

On	Windows	you	can	check	/	change	the	setting	by	right	clicking	on	the	disk	and	clicking	properties.

Installing	AIO

The	Java	NIO	journal	gives	great	performance,	but	If	you	are	running	Apache	ActiveMQ	Artemis	using	Linux	Kernel	2.6	or	later,	we
highly	recommend	you	use	the		AIO		journal	for	the	very	best	persistence	performance.

It's	not	possible	to	use	the	AIO	journal	under	other	operating	systems	or	earlier	versions	of	the	Linux	kernel.

If	you	are	running	Linux	kernel	2.6	or	later	and	don't	already	have		libaio		installed,	you	can	easily	install	it	using	the	following	steps:

Using	yum,	(e.g.	on	Fedora	or	Red	Hat	Enterprise	Linux):

yum	install	libaio

Using	aptitude,	(e.g.	on	Ubuntu	or	Debian	system):

apt-get	install	libaio

Apache	ActiveMQ	Artemis	JDBC	Persistence

WARNING:	The	Apache	ActiveMQ	Artemis	JDBC	persistence	store	is	under	development	and	is	included	for	evaluation	purposes.

The	Apache	ActiveMQ	Artemis	JDBC	persistence	layer	offers	the	ability	to	store	broker	state	(Messages,	Addresses	and	other
application	state)	using	a	database.	N.B.	Address	full	policy	Paging	(See:	The	section	on	Paging)	is	currently	not	supported	with	the
JDBC	persistence	layer.

Using	the	ActiveMQ	Artemis	File	Journal	is	the	recommended	configuration	as	it	offers	higher	levels	of	performance	and	is	more
mature.	The	JDBC	persistence	layer	is	targeted	to	those	users	who	must	use	a	database	e.g.	due	to	internal	company	policy.

ActiveMQ	Artemis	currently	has	support	for	a	limited	number	of	database	vendors	(older	versions	may	work	but	mileage	may	vary):

1.	 PostGres	9.4.x
2.	 MySQL	5.7.x
3.	 Apache	Derby	10.11.1.1

The	JDBC	store	uses	a	JDBC	connection	to	store	messages	and	bindings	data	in	records	in	database	tables.	The	data	stored	in	the
database	tables	is	encoded	using	Apache	ActiveMQ	Artemis	internal	encodings.

Configuring	JDBC	Persistence

To	configure	Apache	ActiveMQ	Artemis	to	use	a	database	for	persisting	messages	and	bindings	data	you	must	do	two	things.

1.	 Add	the	appropriate	JDBC	driver	libraries	to	the	Artemis	runtime.	You	can	do	this	by	dropping	the	relevant	jars	in	the	lib	folder	of
the	ActiveMQ	Artemis	distribution.

2.	 Create	a	store	element	in	your	broker.xml	config	file	under	the		<core>		element.	For	example:

						<store>

Persistence

55

									<database-store>

												<jdbc-connection-url>jdbc:derby:data/derby/database-store;create=true</jdbc-connection-url>

												<bindings-table-name>BINDINGS_TABLE</bindings-table-name>

												<message-table-name>MESSAGE_TABLE</message-table-name>

												<large-message-table-name>LARGE_MESSAGES_TABLE</large-message-table-name>

												<jdbc-driver-class-name>org.apache.derby.jdbc.EmbeddedDriver</jdbc-driver-class-name>

									</database-store>

						</store>

	jdbc-connection-url	

The	full	JDBC	connection	URL	for	your	database	server.	The	connection	url	should	include	all	configuration	parameters	and
database	name.	Note:	When	configuring	the	server	using	the	XML	configuration	files	please	ensure	to	escape	any	illegal	chars;	"&"
for	example,	is	typical	in	JDBC	connection	url	and	should	be	escaped	to	"&".

	bindings-table-name	

The	name	of	the	table	in	which	bindings	data	will	be	persisted	for	the	ActiveMQ	Artemis	server.	Specifying	table	names	allows
users	to	share	single	database	amongst	multiple	servers,	without	interference.

	message-table-name	

The	name	of	the	table	in	which	bindings	data	will	be	persisted	for	the	ActiveMQ	Artemis	server.	Specifying	table	names	allows
users	to	share	single	database	amongst	multiple	servers,	without	interference.

	large-message-table-name	

The	name	of	the	table	in	which	messages	and	related	data	will	be	persisted	for	the	ActiveMQ	Artemis	server.	Specifying	table
names	allows	users	to	share	single	database	amongst	multiple	servers,	without	interference.

	jdbc-driver-class-name	

The	fully	qualified	class	name	of	the	desired	database	Driver.

Configuring	Apache	ActiveMQ	Artemis	for	Zero	Persistence

In	some	situations,	zero	persistence	is	sometimes	required	for	a	messaging	system.	Configuring	Apache	ActiveMQ	Artemis	to	perform
zero	persistence	is	straightforward.	Simply	set	the	parameter		persistence-enabled		in		broker.xml		to		false	.

Please	note	that	if	you	set	this	parameter	to	false,	then	zero	persistence	will	occur.	That	means	no	bindings	data,	message	data,	large
message	data,	duplicate	id	caches	or	paging	data	will	be	persisted.

Persistence

56

Configuring	the	Transport
In	this	chapter	we'll	describe	the	concepts	required	for	understanding	Apache	ActiveMQ	Artemis	transports	and	where	and	how	they're
configured.

Understanding	Acceptors

One	of	the	most	important	concepts	in	Apache	ActiveMQ	Artemis	transports	is	the	acceptor.	Let's	dive	straight	in	and	take	a	look	at	an
acceptor	defined	in	xml	in	the	configuration	file		broker.xml	.

<acceptors>

			<acceptor	name="netty">tcp://localhost:61617</acceptor>

</acceptors>

Acceptors	are	always	defined	inside	an		acceptors		element.	There	can	be	one	or	more	acceptors	defined	in	the		acceptors		element.
There's	no	upper	limit	to	the	number	of	acceptors	per	server.

Each	acceptor	defines	a	way	in	which	connections	can	be	made	to	the	Apache	ActiveMQ	Artemis	server.

In	the	above	example	we're	defining	an	acceptor	that	uses	Netty	to	listen	for	connections	at	port		61617	.

The		acceptor		element	contains	a		URI		that	defines	the	kind	of	Acceptor	to	create	along	with	its	configuration.	The		schema		part	of	the
	URI		defines	the	Acceptor	type	which	can	either	be		tcp		or		vm		which	is		Netty		or	an	In	VM	Acceptor	respectively.	For		Netty		the
host	and	the	port	of	the		URI		define	what	host	and	port	the	Acceptor	will	bind	to.	For	In	VM	the		Authority		part	of	the		URI		defines	a
unique	server	id.

The		acceptor		can	also	be	configured	with	a	set	of	key,	value	pairs	used	to	configure	the	specific	transport,	the	set	of	valid	key-value
pairs	depends	on	the	specific	transport	be	used	and	are	passed	straight	through	to	the	underlying	transport.	These	are	set	on	the		URI		as
part	of	the	query,	like	so:

<acceptor	name="netty">tcp://localhost:61617?sslEnabled=true&keyStorePath=/path</acceptor>

Understanding	Connectors

Whereas	acceptors	are	used	on	the	server	to	define	how	we	accept	connections,	connectors	are	used	by	a	client	to	define	how	it	connects
to	a	server.

Let's	look	at	a	connector	defined	in	our		broker.xml		file:

<connectors>

			<connector	name="netty">tcp://localhost:61617</connector>

</connectors>

Connectors	can	be	defined	inside	a		connectors		element.	There	can	be	one	or	more	connectors	defined	in	the		connectors		element.
There's	no	upper	limit	to	the	number	of	connectors	per	server.

You	make	ask	yourself,	if	connectors	are	used	by	the	client	to	make	connections	then	why	are	they	defined	on	the	server?	There	are	a
couple	of	reasons	for	this:

Sometimes	the	server	acts	as	a	client	itself	when	it	connects	to	another	server,	for	example	when	one	server	is	bridged	to	another,	or
when	a	server	takes	part	in	a	cluster.	In	this	cases	the	server	needs	to	know	how	to	connect	to	other	servers.	That's	defined	by
connectors.

Configuring	Transports

57

http://netty.io/

If	you're	using	JMS	and	you're	using	JNDI	on	the	client	to	look	up	your	JMS	connection	factory	instances	then	when	creating	the
	ActiveMQConnectionFactory		it	needs	to	know	what	server	that	connection	factory	will	create	connections	to.

That's	defined	by	the		java.naming.provider.url		element	in	the	JNDI	context	environment,	e.g.		jndi.properties	.	Behind	the
scenes,	the		ActiveMQInitialContextFactory		uses	the		java.naming.provider.url		to	construct	the	transport.	Here's	a	simple
example:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.MyConnectionFactory=tcp://myhost:61616

Configuring	the	transport	directly	from	the	client	side.

How	do	we	configure	a	core		ClientSessionFactory		with	the	information	that	it	needs	to	connect	with	a	server?

Connectors	are	also	used	indirectly	when	directly	configuring	a	core		ClientSessionFactory		to	directly	talk	to	a	server.	Although	in	this
case	there's	no	need	to	define	such	a	connector	in	the	server	side	configuration,	instead	we	just	create	the	parameters	and	tell	the
	ClientSessionFactory		which	connector	factory	to	use.

Here's	an	example	of	creating	a		ClientSessionFactory		which	will	connect	directly	to	the	acceptor	we	defined	earlier	in	this	chapter,	it
uses	the	standard	Netty	TCP	transport	and	will	try	and	connect	on	port	61617	to	localhost	(default):

Map<String,	Object>	connectionParams	=	new	HashMap<String,	Object>();

connectionParams.put(org.apache.activemq.artemis.core.remoting.impl.netty.TransportConstants.PORT_PROP_NAME,

																				61617);

TransportConfiguration	transportConfiguration	=

				new	TransportConfiguration(

				"org.apache.activemq.artemis.core.remoting.impl.netty.NettyConnectorFactory",

				connectionParams);

ServerLocator	locator	=	ActiveMQClient.createServerLocatorWithoutHA(transportConfiguration);

ClientSessionFactory	sessionFactory	=	locator.createClientSessionFactory();

ClientSession	session	=	sessionFactory.createSession(...);

etc

Similarly,	if	you're	using	JMS,	you	can	configure	the	JMS	connection	factory	directly	on	the	client	side	without	having	to	define	a
connector	on	the	server	side	or	define	a	connection	factory	in		activemq-jms.xml	:

Map<String,	Object>	connectionParams	=	new	HashMap<String,	Object>();

connectionParams.put(org.apache.activemq.artemis.core.remoting.impl.netty.TransportConstants.PORT_PROP_NAME,	61617);

TransportConfiguration	transportConfiguration	=

				new	TransportConfiguration(

				"org.apache.activemq.artemis.core.remoting.impl.netty.NettyConnectorFactory",

				connectionParams);

ConnectionFactory	connectionFactory	=	ActiveMQJMSClient.createConnectionFactoryWithoutHA(JMSFactoryType.CF,	transportConfigura

tion);

Connection	jmsConnection	=	connectionFactory.createConnection();

etc

Configuring	the	Netty	transport

Configuring	Transports

58

Out	of	the	box,	Apache	ActiveMQ	Artemis	currently	uses	Netty,	a	high	performance	low	level	network	library.

Our	Netty	transport	can	be	configured	in	several	different	ways;	to	use	straightforward	TCP	sockets,	SSL,	or	to	tunnel	over	HTTP	or
HTTPS..

We	believe	this	caters	for	the	vast	majority	of	transport	requirements.

Single	Port	Support
Apache	ActiveMQ	Artemis	supports	using	a	single	port	for	all	protocols,	Apache	ActiveMQ	Artemis	will	automatically	detect	which
protocol	is	being	used	CORE,	AMQP,	STOMP	or	OPENWIRE	and	use	the	appropriate	Apache	ActiveMQ	Artemis	handler.	It	will
also	detect	whether	protocols	such	as	HTTP	or	Web	Sockets	are	being	used	and	also	use	the	appropriate	decoders

It	is	possible	to	limit	which	protocols	are	supported	by	using	the		protocols		parameter	on	the	Acceptor	like	so:

				<connector	name="netty">tcp://localhost:61617?protocols=CORE,AMQP</connector>

Configuring	Netty	TCP

Netty	TCP	is	a	simple	unencrypted	TCP	sockets	based	transport.	Netty	TCP	can	be	configured	to	use	old	blocking	Java	IO	or	non
blocking	Java	NIO.	We	recommend	you	use	the	Java	NIO	on	the	server	side	for	better	scalability	with	many	concurrent	connections.
However	using	Java	old	IO	can	sometimes	give	you	better	latency	than	NIO	when	you're	not	so	worried	about	supporting	many
thousands	of	concurrent	connections.

If	you're	running	connections	across	an	untrusted	network	please	bear	in	mind	this	transport	is	unencrypted.	You	may	want	to	look	at
the	SSL	or	HTTPS	configurations.

With	the	Netty	TCP	transport	all	connections	are	initiated	from	the	client	side.	I.e.	the	server	does	not	initiate	any	connections	to	the
client.	This	works	well	with	firewall	policies	that	typically	only	allow	connections	to	be	initiated	in	one	direction.

All	the	valid	Netty	transport	keys	are	defined	in	the	class		org.apache.activemq.artemis.core.remoting.impl.netty.TransportConstants	.
Most	parameters	can	be	used	either	with	acceptors	or	connectors,	some	only	work	with	acceptors.	The	following	parameters	can	be
used	to	configure	Netty	for	simple	TCP:

Note

The		host		and		port		parameters	are	only	used	in	the	core	API,	in	XML	configuration	these	are	set	in	the	URI	host	and	port.

	host	.	This	specifies	the	host	name	or	IP	address	to	connect	to	(when	configuring	a	connector)	or	to	listen	on	(when	configuring	an
acceptor).	The	default	value	for	this	property	is		localhost	.	When	configuring	acceptors,	multiple	hosts	or	IP	addresses	can	be
specified	by	separating	them	with	commas.	It	is	also	possible	to	specify		0.0.0.0		to	accept	connection	from	all	the	host's	network
interfaces.	It's	not	valid	to	specify	multiple	addresses	when	specifying	the	host	for	a	connector;	a	connector	makes	a	connection	to
one	specific	address.

Note

Don't	forget	to	specify	a	host	name	or	IP	address!	If	you	want	your	server	able	to	accept	connections	from	other	nodes	you
must	specify	a	hostname	or	IP	address	at	which	the	acceptor	will	bind	and	listen	for	incoming	connections.	The	default	is
localhost	which	of	course	is	not	accessible	from	remote	nodes!

	port	.	This	specified	the	port	to	connect	to	(when	configuring	a	connector)	or	to	listen	on	(when	configuring	an	acceptor).	The
default	value	for	this	property	is		61616	.

	tcpNoDelay	.	If	this	is		true		then	Nagle's	algorithm	will	be	disabled.	This	is	a	Java	(client)	socket	option.	The	default	value	for	this
property	is		true	.

	tcpSendBufferSize	.	This	parameter	determines	the	size	of	the	TCP	send	buffer	in	bytes.	The	default	value	for	this	property	is
	32768		bytes	(32KiB).

Configuring	Transports

59

http://netty.io/
http://en.wikipedia.org/wiki/Nagle%27s_algorithm
http://docs.oracle.com/javase/7/docs/technotes/guides/net/socketOpt.html

TCP	buffer	sizes	should	be	tuned	according	to	the	bandwidth	and	latency	of	your	network.	Here's	a	good	link	that	explains	the
theory	behind	this.

In	summary	TCP	send/receive	buffer	sizes	should	be	calculated	as:

buffer_size	=	bandwidth	*	RTT.

Where	bandwidth	is	in	bytes	per	second	and	network	round	trip	time	(RTT)	is	in	seconds.	RTT	can	be	easily	measured	using	the
	ping		utility.

For	fast	networks	you	may	want	to	increase	the	buffer	sizes	from	the	defaults.

	tcpReceiveBufferSize	.	This	parameter	determines	the	size	of	the	TCP	receive	buffer	in	bytes.	The	default	value	for	this	property
is		32768		bytes	(32KiB).

	batchDelay	.	Before	writing	packets	to	the	transport,	Apache	ActiveMQ	Artemis	can	be	configured	to	batch	up	writes	for	a
maximum	of		batchDelay		milliseconds.	This	can	increase	overall	throughput	for	very	small	messages.	It	does	so	at	the	expense	of
an	increase	in	average	latency	for	message	transfer.	The	default	value	for	this	property	is		0		ms.

	directDeliver	.	When	a	message	arrives	on	the	server	and	is	delivered	to	waiting	consumers,	by	default,	the	delivery	is	done	on	the
same	thread	as	that	on	which	the	message	arrived.	This	gives	good	latency	in	environments	with	relatively	small	messages	and	a
small	number	of	consumers,	but	at	the	cost	of	overall	throughput	and	scalability	-	especially	on	multi-core	machines.	If	you	want
the	lowest	latency	and	a	possible	reduction	in	throughput	then	you	can	use	the	default	value	for		directDeliver		(i.e.		true).	If	you
are	willing	to	take	some	small	extra	hit	on	latency	but	want	the	highest	throughput	set		directDeliver		to		false	.

	nioRemotingThreads	.	When	configured	to	use	NIO,	Apache	ActiveMQ	Artemis	will,	by	default,	use	a	number	of	threads	equal	to
three	times	the	number	of	cores	(or	hyper-threads)	as	reported	by		Runtime.getRuntime().availableProcessors()		for	processing
incoming	packets.	If	you	want	to	override	this	value,	you	can	set	the	number	of	threads	by	specifying	this	parameter.	The	default
value	for	this	parameter	is		-1		which	means	use	the	value	from		Runtime.getRuntime().availableProcessors()		*	3.

	localAddress	.	When	configured	a	Netty	Connector	it	is	possible	to	specify	which	local	address	the	client	will	use	when
connecting	to	the	remote	address.	This	is	typically	used	in	the	Application	Server	or	when	running	Embedded	to	control	which
address	is	used	for	outbound	connections.	If	the	local-address	is	not	set	then	the	connector	will	use	any	local	address	available

	localPort	.	When	configured	a	Netty	Connector	it	is	possible	to	specify	which	local	port	the	client	will	use	when	connecting	to
the	remote	address.	This	is	typically	used	in	the	Application	Server	or	when	running	Embedded	to	control	which	port	is	used	for
outbound	connections.	If	the	local-port	default	is	used,	which	is	0,	then	the	connector	will	let	the	system	pick	up	an	ephemeral
port.	valid	ports	are	0	to	65535

	connectionsAllowed	.	This	is	only	valid	for	acceptors.	It	limits	the	number	of	connections	which	the	acceptor	will	allow.	When	this
limit	is	reached	a	DEBUG	level	message	is	issued	to	the	log,	and	the	connection	is	refused.	The	type	of	client	in	use	will	determine
what	happens	when	the	connection	is	refused.	In	the	case	of	a		core		client,	it	will	result	in	a
	org.apache.activemq.artemis.api.core.ActiveMQConnectionTimedOutException	.

Configuring	Netty	SSL

Netty	SSL	is	similar	to	the	Netty	TCP	transport	but	it	provides	additional	security	by	encrypting	TCP	connections	using	the	Secure
Sockets	Layer	SSL

Please	see	the	examples	for	a	full	working	example	of	using	Netty	SSL.

Netty	SSL	uses	all	the	same	properties	as	Netty	TCP	but	adds	the	following	additional	properties:

	sslEnabled	

Must	be		true		to	enable	SSL.	Default	is		false	.

	keyStorePath	

Configuring	Transports

60

http://www-didc.lbl.gov/TCP-tuning/

When	used	on	an		acceptor		this	is	the	path	to	the	SSL	key	store	on	the	server	which	holds	the	server's	certificates	(whether	self-
signed	or	signed	by	an	authority).

When	used	on	a		connector		this	is	the	path	to	the	client-side	SSL	key	store	which	holds	the	client	certificates.	This	is	only	relevant
for	a		connector		if	you	are	using	2-way	SSL	(i.e.	mutual	authentication).	Although	this	value	is	configured	on	the	server,	it	is
downloaded	and	used	by	the	client.	If	the	client	needs	to	use	a	different	path	from	that	set	on	the	server	then	it	can	override	the
server-side	setting	by	either	using	the	customary	"javax.net.ssl.keyStore"	system	property	or	the	ActiveMQ-specific
"org.apache.activemq.ssl.keyStore"	system	property.	The	ActiveMQ-specific	system	property	is	useful	if	another	component	on
client	is	already	making	use	of	the	standard,	Java	system	property.

	keyStorePassword	

When	used	on	an		acceptor		this	is	the	password	for	the	server-side	keystore.

When	used	on	a		connector		this	is	the	password	for	the	client-side	keystore.	This	is	only	relevant	for	a		connector		if	you	are	using
2-way	SSL	(i.e.	mutual	authentication).	Although	this	value	can	be	configured	on	the	server,	it	is	downloaded	and	used	by	the
client.	If	the	client	needs	to	use	a	different	password	from	that	set	on	the	server	then	it	can	override	the	server-side	setting	by	either
using	the	customary	"javax.net.ssl.keyStorePassword"	system	property	or	the	ActiveMQ-specific
"org.apache.activemq.ssl.keyStorePassword"	system	property.	The	ActiveMQ-specific	system	property	is	useful	if	another
component	on	client	is	already	making	use	of	the	standard,	Java	system	property.

	trustStorePath	

When	used	on	an		acceptor		this	is	the	path	to	the	server-side	SSL	key	store	that	holds	the	keys	of	all	the	clients	that	the	server
trusts.	This	is	only	relevant	for	an		acceptor		if	you	are	using	2-way	SSL	(i.e.	mutual	authentication).

When	used	on	a		connector		this	is	the	path	to	the	client-side	SSL	key	store	which	holds	the	public	keys	of	all	the	servers	that	the
client	trusts.	Although	this	value	can	be	configured	on	the	server,	it	is	downloaded	and	used	by	the	client.	If	the	client	needs	to	use
a	different	path	from	that	set	on	the	server	then	it	can	override	the	server-side	setting	by	either	using	the	customary
"javax.net.ssl.trustStore"	system	property	or	the	ActiveMQ-specific	"org.apache.activemq.ssl.trustStore"	system	property.	The
ActiveMQ-specific	system	property	is	useful	if	another	component	on	client	is	already	making	use	of	the	standard,	Java	system
property.

	trustStorePassword	

When	used	on	an		acceptor		this	is	the	password	for	the	server-side	trust	store.	This	is	only	relevant	for	an		acceptor		if	you	are
using	2-way	SSL	(i.e.	mutual	authentication).

When	used	on	a		connector		this	is	the	password	for	the	client-side	truststore.	Although	this	value	can	be	configured	on	the	server,
it	is	downloaded	and	used	by	the	client.	If	the	client	needs	to	use	a	different	password	from	that	set	on	the	server	then	it	can
override	the	server-side	setting	by	either	using	the	customary	"javax.net.ssl.trustStorePassword"	system	property	or	the
ActiveMQ-specific	"org.apache.activemq.ssl.trustStorePassword"	system	property.	The	ActiveMQ-specific	system	property	is
useful	if	another	component	on	client	is	already	making	use	of	the	standard,	Java	system	property.

	enabledCipherSuites	

Whether	used	on	an		acceptor		or		connector		this	is	a	comma	separated	list	of	cipher	suites	used	for	SSL	communication.	The
default	value	is		null		which	means	the	JVM's	default	will	be	used.

	enabledProtocols	

Whether	used	on	an		acceptor		or		connector		this	is	a	comma	separated	list	of	protocols	used	for	SSL	communication.	The	default
value	is		null		which	means	the	JVM's	default	will	be	used.

	needClientAuth	

This	property	is	only	for	an		acceptor	.	It	tells	a	client	connecting	to	this	acceptor	that	2-way	SSL	is	required.	Valid	values	are
	true		or		false	.	Default	is		false	.

	verifyHost	

Configuring	Transports

61

When	used	on	an		acceptor		the		CN		of	the	connecting	client's	SSL	certificate	will	be	compared	to	its	hostname	to	verify	they
match.	This	is	useful	only	for	2-way	SSL.

When	used	on	a		connector		the		CN		of	the	server's	SSL	certificate	will	be	compared	to	its	hostname	to	verify	they	match.	This	is
useful	for	both	1-way	and	2-way	SSL.

Valid	values	are		true		or		false	.	Default	is		false	.

Configuring	Netty	HTTP
Netty	HTTP	tunnels	packets	over	the	HTTP	protocol.	It	can	be	useful	in	scenarios	where	firewalls	only	allow	HTTP	traffic	to	pass.

Please	see	the	examples	for	a	full	working	example	of	using	Netty	HTTP.

Netty	HTTP	uses	the	same	properties	as	Netty	TCP	but	adds	the	following	additional	properties:

	httpEnabled	.	This	is	now	no	longer	needed	as	of	version	2.4.	With	single	port	support	Apache	ActiveMQ	Artemis	will	now
automatically	detect	if	http	is	being	used	and	configure	itself.

	httpClientIdleTime	.	How	long	a	client	can	be	idle	before	sending	an	empty	http	request	to	keep	the	connection	alive

	httpClientIdleScanPeriod	.	How	often,	in	milliseconds,	to	scan	for	idle	clients

	httpResponseTime	.	How	long	the	server	can	wait	before	sending	an	empty	http	response	to	keep	the	connection	alive

	httpServerScanPeriod	.	How	often,	in	milliseconds,	to	scan	for	clients	needing	responses

	httpRequiresSessionId	.	If		true		the	client	will	wait	after	the	first	call	to	receive	a	session	id.	Used	the	http	connector	is
connecting	to	servlet	acceptor	(not	recommended)

Configuring	Transports

62

Configuration	Reload
The	system	will	perform	a	periodic	check	on	the	configuration	files,	configured	by		configuration-file-refresh-period	,	with	the	default
at	5000,	in	milliseconds.

Once	the	configuration	file	is	changed	(broker.xml)	the	following	modules	will	be	reloaded	automatically:

Address	Settings
Security	Settings
JMS	Queues
JMS	Topics

Notice:	Queues	and	Topics	won't	be	removed	upon	reload,	given	the	risk	of	losing	messages.	You	may	execute	explicit	CLI	or
Management	operations	to	remove	destinations.

Configuration	Reload

63

Detecting	Dead	Connections
In	this	section	we	will	discuss	connection	time-to-live	(TTL)	and	explain	how	Apache	ActiveMQ	Artemis	deals	with	crashed	clients
and	clients	which	have	exited	without	cleanly	closing	their	resources.

Cleaning	up	Dead	Connection	Resources	on	the	Server

Before	an	Apache	ActiveMQ	Artemis	client	application	exits	it	is	considered	good	practice	that	it	should	close	its	resources	in	a
controlled	manner,	using	a		finally		block.

Here's	an	example	of	a	well	behaved	core	client	application	closing	its	session	and	session	factory	in	a	finally	block:

ServerLocator	locator	=	null;

ClientSessionFactory	sf	=	null;

ClientSession	session	=	null;

try

{

			locator	=	ActiveMQClient.createServerLocatorWithoutHA(..);

			sf	=	locator.createClientSessionFactory();;

			session	=	sf.createSession(...);

			...	do	some	stuff	with	the	session...

}

finally

{

			if	(session	!=	null)

			{

						session.close();

			}

			if	(sf	!=	null)

			{

						sf.close();

			}

			if(locator	!=	null)

			{

						locator.close();

			}

}

And	here's	an	example	of	a	well	behaved	JMS	client	application:

Connection	jmsConnection	=	null;

try

{

			ConnectionFactory	jmsConnectionFactory	=	ActiveMQJMSClient.createConnectionFactoryWithoutHA(...);

			jmsConnection	=	jmsConnectionFactory.createConnection();

			...	do	some	stuff	with	the	connection...

}

finally

{

			if	(connection	!=	null)

			{

						connection.close();

			}

}

Detecting	Dead	Connections

64

Or	with	using	auto-closeable	feature	from	Java,	which	can	save	a	few	lines	of	code:

try	(

					ActiveMQConnectionFactory	jmsConnectionFactory	=	new	ActiveMQConnectionFactory();

					Connection	jmsConnection	=	jmsConnectionFactory.createConnection())

{

			...	do	some	stuff	with	the	connection...

}

Unfortunately	users	don't	always	write	well	behaved	applications,	and	sometimes	clients	just	crash	so	they	don't	have	a	chance	to	clean
up	their	resources!

If	this	occurs	then	it	can	leave	server	side	resources,	like	sessions,	hanging	on	the	server.	If	these	were	not	removed	they	would	cause	a
resource	leak	on	the	server	and	over	time	this	result	in	the	server	running	out	of	memory	or	other	resources.

We	have	to	balance	the	requirement	for	cleaning	up	dead	client	resources	with	the	fact	that	sometimes	the	network	between	the	client
and	the	server	can	fail	and	then	come	back,	allowing	the	client	to	reconnect.	Apache	ActiveMQ	Artemis	supports	client	reconnection,	so
we	don't	want	to	clean	up	"dead"	server	side	resources	too	soon	or	this	will	prevent	any	client	from	reconnecting,	as	it	won't	be	able	to
find	its	old	sessions	on	the	server.

Apache	ActiveMQ	Artemis	makes	all	of	this	configurable.	For	each		ClientSessionFactory		we	define	a	connection	TTL.	Basically,	the
TTL	determines	how	long	the	server	will	keep	a	connection	alive	in	the	absence	of	any	data	arriving	from	the	client.	The	client	will
automatically	send	"ping"	packets	periodically	to	prevent	the	server	from	closing	it	down.	If	the	server	doesn't	receive	any	packets	on	a
connection	for	the	connection	TTL	time,	then	it	will	automatically	close	all	the	sessions	on	the	server	that	relate	to	that	connection.

If	you're	using	JMS,	the	connection	TTL	is	defined	by	the		ConnectionTTL		attribute	on	a		ActiveMQConnectionFactory		instance,	or	if
you're	deploying	JMS	connection	factory	instances	direct	into	JNDI	on	the	server	side,	you	can	specify	it	in	the	xml	config,	using	the
parameter		connectionTtl	.

The	default	value	for	connection	ttl	on	an	"unreliable"	connection	(e.g.	a	Netty	connection)	is		60000	ms,	i.e.	1	minute.	The	default	value
for	connection	ttl	on	a	"reliable"	connection	(e.g.	an	in-vm	connection)	is		-1	.	A	value	of		-1		for		ConnectionTTL		means	the	server	will
never	time	out	the	connection	on	the	server	side.

If	you	do	not	wish	clients	to	be	able	to	specify	their	own	connection	TTL,	you	can	override	all	values	used	by	a	global	value	set	on	the
server	side.	This	can	be	done	by	specifying	the		connection-ttl-override		attribute	in	the	server	side	configuration.	The	default	value	for
	connection-ttl-override		is		-1		which	means	"do	not	override"	(i.e.	let	clients	use	their	own	values).

The	logic	to	check	connections	for	TTL	violations	runs	periodically	on	the	broker.	By	default,	the	checks	are	done	every	2,000
milliseconds.	However,	this	can	be	changed	if	necessary	by	using	the		connection-ttl-check-interval		attribute.

Closing	core	sessions	or	JMS	connections	that	you	have	failed	to
close

As	previously	discussed,	it's	important	that	all	core	client	sessions	and	JMS	connections	are	always	closed	explicitly	in	a		finally	
block	when	you	are	finished	using	them.

If	you	fail	to	do	so,	Apache	ActiveMQ	Artemis	will	detect	this	at	garbage	collection	time,	and	log	a	warning	similar	to	the	following	in
the	logs	(If	you	are	using	JMS	the	warning	will	involve	a	JMS	connection	not	a	client	session):

[Finalizer]	20:14:43,244	WARNING	[org.apache.activemq.artemis.core.client.impl.DelegatingSession]		I'm	closing	a	ClientSession

	you	left	open.	Please	make	sure	you	close	all	ClientSessions	explicitly	before	let

ting	them	go	out	of	scope!

[Finalizer]	20:14:43,244	WARNING	[org.apache.activemq.artemis.core.client.impl.DelegatingSession]		The	session	you	didn't	clos

e	was	created	here:

java.lang.Exception

			at	org.apache.activemq.artemis.core.client.impl.DelegatingSession.<init>(DelegatingSession.java:83)

			at	org.acme.yourproject.YourClass	(YourClass.java:666)

Detecting	Dead	Connections

65

Apache	ActiveMQ	Artemis	will	then	close	the	connection	/	client	session	for	you.

Note	that	the	log	will	also	tell	you	the	exact	line	of	your	user	code	where	you	created	the	JMS	connection	/	client	session	that	you	later
did	not	close.	This	will	enable	you	to	pinpoint	the	error	in	your	code	and	correct	it	appropriately.

Detecting	failure	from	the	client	side.
In	the	previous	section	we	discussed	how	the	client	sends	pings	to	the	server	and	how	"dead"	connection	resources	are	cleaned	up	by
the	server.	There's	also	another	reason	for	pinging,	and	that's	for	the	client	to	be	able	to	detect	that	the	server	or	network	has	failed.

As	long	as	the	client	is	receiving	data	from	the	server	it	will	consider	the	connection	to	be	still	alive.

If	the	client	does	not	receive	any	packets	for	a	configurable	number	of	milliseconds	then	it	will	consider	the	connection	failed	and	will
either	initiate	failover,	or	call	any		FailureListener		instances	(or		ExceptionListener		instances	if	you	are	using	JMS)	depending	on	how
it	has	been	configured.

This	is	controlled	by	the		clientFailureCheckPeriod		attribute	which	can	be	set	a	number	of	ways:

If	you're	using	the	core	API	then	you	can	invoke
	org.apache.activemq.artemis.api.core.client.ServerLocator.setClientFailureCheckPeriod(long)	

If	you're	using	JMS	then	you	can	invoke
	org.apache.activemq.artemis.jms.client.ActiveMQConnectionFactory.setClientFailureCheckPeriod(long)		on	your
	javax.jms.ConnectionFactory	.

However,	the	simplest	way	is	to	just	set	the		clientFailureCheckPeriod		on	the	URL	your	client	is	using	to	connect,	e.g.
	tcp://localhost:61616?clientFailureCheckPeriod=30000	.

The	default	value	for	client	failure	check	period	on	an	"unreliable"	connection	(e.g.	a	Netty	connection)	is		30000		ms,	i.e.	30	seconds.
The	default	value	for	client	failure	check	period	on	a	"reliable"	connection	(e.g.	an	in-vm	connection)	is		-1	.	A	value	of		-1		means	the
client	will	never	fail	the	connection	on	the	client	side	if	no	data	is	received	from	the	server.	Typically	this	is	much	lower	than	connection
TTL	to	allow	clients	to	reconnect	in	case	of	transitory	failure.

Configuring	Asynchronous	Connection	Execution
Most	packets	received	on	the	server	side	are	executed	on	the	remoting	thread.	These	packets	represent	short-running	operations	and	are
always	executed	on	the	remoting	thread	for	performance	reasons.

However,	by	default	some	kinds	of	packets	are	executed	using	a	thread	from	a	thread	pool	so	that	the	remoting	thread	is	not	tied	up	for
too	long.	Please	note	that	processing	operations	asynchronously	on	another	thread	adds	a	little	more	latency.	These	packets	are:

	org.apache.activemq.artemis.core.protocol.core.impl.wireformat.RollbackMessage	

	org.apache.activemq.artemis.core.protocol.core.impl.wireformat.SessionCloseMessage	

	org.apache.activemq.artemis.core.protocol.core.impl.wireformat.SessionCommitMessage	

	org.apache.activemq.artemis.core.protocol.core.impl.wireformat.SessionXACommitMessage	

	org.apache.activemq.artemis.core.protocol.core.impl.wireformat.SessionXAPrepareMessage	

	org.apache.activemq.artemis.core.protocol.core.impl.wireformat.SessionXARollbackMessage	

To	disable	asynchronous	connection	execution,	set	the	parameter		async-connection-execution-enabled		in		broker.xml		to		false	
(default	value	is		true).

Detecting	Dead	Connections

66

Detecting	Dead	Connections

67

Detecting	Slow	Consumers
In	this	section	we	will	discuss	how	Apache	ActiveMQ	Artemis	can	be	configured	to	deal	with	slow	consumers.	A	slow	consumer	with	a
server-side	queue	(e.g.	JMS	topic	subscriber)	can	pose	a	significant	problem	for	broker	performance.	If	messages	build	up	in	the
consumer's	server-side	queue	then	memory	will	begin	filling	up	and	the	broker	may	enter	paging	mode	which	would	impact	performance
negatively.	However,	criteria	can	be	set	so	that	consumers	which	don't	acknowledge	messages	quickly	enough	can	potentially	be
disconnected	from	the	broker	which	in	the	case	of	a	non-durable	JMS	subscriber	would	allow	the	broker	to	remove	the	subscription	and
all	of	its	messages	freeing	up	valuable	server	resources.

Configuration	required	for	detecting	slow	consumers

By	default	the	server	will	not	detect	slow	consumers.	If	slow	consumer	detection	is	desired	then	see	queue	attributes	chapter	for	more
details.

The	calculation	to	determine	whether	or	not	a	consumer	is	slow	only	inspects	the	number	of	messages	a	particular	consumer	has
acknowledged.	It	doesn't	take	into	account	whether	or	not	flow	control	has	been	enabled	on	the	consumer,	whether	or	not	the	consumer
is	streaming	a	large	message,	etc.	Keep	this	in	mind	when	configuring	slow	consumer	detection.

Please	note	that	slow	consumer	checks	are	performed	using	the	scheduled	thread	pool	and	that	each	queue	on	the	broker	with	slow
consumer	detection	enabled	will	cause	a	new	entry	in	the	internal		java.util.concurrent.ScheduledThreadPoolExecutor		instance.	If	there
are	a	high	number	of	queues	and	the		slow-consumer-check-period		is	relatively	low	then	there	may	be	delays	in	executing	some	of	the
checks.	However,	this	will	not	impact	the	accuracy	of	the	calculations	used	by	the	detection	algorithm.	See	thread	pooling	for	more
details	about	this	pool.

Detecting	Slow	Consumers

68

Network	Isolation
In	case	the	server	is	isolated,	say	for	a	network	failure,	the	server	will	be	isolated	for	its	peers	on	a	network	of	brokers.	If	you	are
playing	with	replication	the	backup	may	think	the	backup	failed	and	you	may	endup	with	two	live	nodes,	what	is	called	the	split	brain.

Pinging	the	network
You	may	configure	one	more	addresses	on	the	broker.xml	that	are	part	of	your	network	topology,	that	will	be	pinged	through	the	life
cycle	of	the	server.

The	server	will	stop	itself	until	the	network	is	back	on	such	case.

If	you	execute	the	create	command	passing	a	-ping	argument,	you	will	create	a	default	xml	that	is	ready	to	be	used	with	network	checks:

./artemis	create	/myDir/myServer	--ping	10.0.0.1

This	XML	part	will	be	added	to	your	broker.xml:

<!--

You	can	specify	the	NIC	you	want	to	use	to	verify	if	the	network

	<network-check-NIC>theNickName</network-check-NIC>

-->

<!--

Use	this	to	use	an	HTTP	server	to	validate	the	network

	<network-check-URL-list>http://www.apache.org</network-check-URL-list>	-->

<network-check-period>10000</network-check-period>

<network-check-timeout>1000</network-check-timeout>

<!--	this	is	a	comma	separated	list,	no	spaces,	just	DNS	or	IPs

			it	should	accept	IPV6

			Warning:	Make	sure	you	understand	your	network	topology	as	this	is	meant	to	check	if	your	network	is	up.

												Using	IPs	that	could	eventually	disappear	or	be	partially	visible	may	defeat	the	purpose.

												You	can	use	a	list	of	multiple	IPs,	any	successful	ping	will	make	the	server	OK	to	continue	running	-->

<network-check-list>10.0.0.1</network-check-list>

<!--	use	this	to	customize	the	ping	used	for	ipv4	addresses	-->

<network-check-ping-command>ping	-c	1	-t	%d	%s</network-check-ping-command>

<!--	use	this	to	customize	the	ping	used	for	ipv	addresses	-->

<network-check-ping6-command>ping6	-c	1	%2$s</network-check-ping6-command>

Once	you	lose	connectivity	towards	10.0.0.1	on	the	given	example	,	you	will	see	see	this	output	at	the	server:

09:49:24,562	WARN		[org.apache.activemq.artemis.core.server.NetworkHealthCheck]	Ping	Address	/10.0.0.1	wasn't	reacheable

09:49:36,577	INFO		[org.apache.activemq.artemis.core.server.NetworkHealthCheck]	Network	is	unhealthy,	stopping	service	ActiveM

QServerImpl::serverUUID=04fd5dd8-b18c-11e6-9efe-6a0001921ad0

09:49:36,625	INFO		[org.apache.activemq.artemis.core.server]	AMQ221002:	Apache	ActiveMQ	Artemis	Message	Broker	version	1.6.0	[

04fd5dd8-b18c-11e6-9efe-6a0001921ad0]	stopped,	uptime	14.787	seconds

09:50:00,653	WARN		[org.apache.activemq.artemis.core.server.NetworkHealthCheck]	ping:	sendto:	No	route	to	host

09:50:10,656	WARN		[org.apache.activemq.artemis.core.server.NetworkHealthCheck]	Host	is	down:	java.net.ConnectException:	Host	

is	down

				at	java.net.Inet6AddressImpl.isReachable0(Native	Method)	[rt.jar:1.8.0_73]

				at	java.net.Inet6AddressImpl.isReachable(Inet6AddressImpl.java:77)	[rt.jar:1.8.0_73]

				at	java.net.InetAddress.isReachable(InetAddress.java:502)	[rt.jar:1.8.0_73]

				at	org.apache.activemq.artemis.core.server.NetworkHealthCheck.check(NetworkHealthCheck.java:295)	[artemis-commons-1.6.0-SN

APSHOT.jar:1.6.0-SNAPSHOT]

				at	org.apache.activemq.artemis.core.server.NetworkHealthCheck.check(NetworkHealthCheck.java:276)	[artemis-commons-1.6.0-SN

APSHOT.jar:1.6.0-SNAPSHOT]

Avoiding	Network	Isolation

69

				at	org.apache.activemq.artemis.core.server.NetworkHealthCheck.run(NetworkHealthCheck.java:244)	[artemis-commons-1.6.0-SNAP

SHOT.jar:1.6.0-SNAPSHOT]

				at	org.apache.activemq.artemis.core.server.ActiveMQScheduledComponent$2.run(ActiveMQScheduledComponent.java:189)	[artemis-

commons-1.6.0-SNAPSHOT.jar:1.6.0-SNAPSHOT]

				at	org.apache.activemq.artemis.core.server.ActiveMQScheduledComponent$3.run(ActiveMQScheduledComponent.java:199)	[artemis-

commons-1.6.0-SNAPSHOT.jar:1.6.0-SNAPSHOT]

				at	java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)	[rt.jar:1.8.0_73]

				at	java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308)	[rt.jar:1.8.0_73]

				at	java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:180)	[

rt.jar:1.8.0_73]

				at	java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:294)	[rt.jar:

1.8.0_73]

				at	java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)	[rt.jar:1.8.0_73]

				at	java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)	[rt.jar:1.8.0_73]

				at	java.lang.Thread.run(Thread.java:745)	[rt.jar:1.8.0_73]

Once	you	re	establish	your	network	connections	towards	the	configured	check	list:

09:53:23,461	INFO		[org.apache.activemq.artemis.core.server.NetworkHealthCheck]	Network	is	healthy,	starting	service	ActiveMQS

erverImpl::

09:53:23,462	INFO		[org.apache.activemq.artemis.core.server]	AMQ221000:	live	Message	Broker	is	starting	with	configuration	Bro

ker	Configuration	(clustered=false,journalDirectory=./data/journal,bindingsDirectory=./data/bindings,largeMessagesDirectory=./

data/large-messages,pagingDirectory=./data/paging)

09:53:23,462	INFO		[org.apache.activemq.artemis.core.server]	AMQ221013:	Using	NIO	Journal

09:53:23,462	INFO		[org.apache.activemq.artemis.core.server]	AMQ221043:	Protocol	module	found:	[artemis-server].	Adding	protoc

ol	support	for:	CORE

09:53:23,463	INFO		[org.apache.activemq.artemis.core.server]	AMQ221043:	Protocol	module	found:	[artemis-amqp-protocol].	Adding

	protocol	support	for:	AMQP

09:53:23,463	INFO		[org.apache.activemq.artemis.core.server]	AMQ221043:	Protocol	module	found:	[artemis-hornetq-protocol].	Add

ing	protocol	support	for:	HORNETQ

09:53:23,463	INFO		[org.apache.activemq.artemis.core.server]	AMQ221043:	Protocol	module	found:	[artemis-mqtt-protocol].	Adding

	protocol	support	for:	MQTT

09:53:23,464	INFO		[org.apache.activemq.artemis.core.server]	AMQ221043:	Protocol	module	found:	[artemis-openwire-protocol].	Ad

ding	protocol	support	for:	OPENWIRE

09:53:23,464	INFO		[org.apache.activemq.artemis.core.server]	AMQ221043:	Protocol	module	found:	[artemis-stomp-protocol].	Addin

g	protocol	support	for:	STOMP

09:53:23,541	INFO		[org.apache.activemq.artemis.core.server]	AMQ221003:	Deploying	queue	jms.queue.DLQ

09:53:23,541	INFO		[org.apache.activemq.artemis.core.server]	AMQ221003:	Deploying	queue	jms.queue.ExpiryQueue

09:53:23,549	INFO		[org.apache.activemq.artemis.core.server]	AMQ221020:	Started	Acceptor	at	0.0.0.0:61616	for	protocols	[CORE,

MQTT,AMQP,STOMP,HORNETQ,OPENWIRE]

09:53:23,550	INFO		[org.apache.activemq.artemis.core.server]	AMQ221020:	Started	Acceptor	at	0.0.0.0:5445	for	protocols	[HORNET

Q,STOMP]

09:53:23,554	INFO		[org.apache.activemq.artemis.core.server]	AMQ221020:	Started	Acceptor	at	0.0.0.0:5672	for	protocols	[AMQP]

09:53:23,555	INFO		[org.apache.activemq.artemis.core.server]	AMQ221020:	Started	Acceptor	at	0.0.0.0:1883	for	protocols	[MQTT]

09:53:23,556	INFO		[org.apache.activemq.artemis.core.server]	AMQ221020:	Started	Acceptor	at	0.0.0.0:61613	for	protocols	[STOMP

]

09:53:23,556	INFO		[org.apache.activemq.artemis.core.server]	AMQ221007:	Server	is	now	live

09:53:23,556	INFO		[org.apache.activemq.artemis.core.server]	AMQ221001:	Apache	ActiveMQ	Artemis	Message	Broker	version	1.6.0	[

0.0.0.0,	nodeID=04fd5dd8-b18c-11e6-9efe-6a0001921ad0]	

Warning
Make	sure	you	understand	your	network	topology	as	this	is	meant	to	validate	your	network.	Using	IPs	that	could	eventually
disappear	or	be	partially	visible	may	defeat	the	purpose.	You	can	use	a	list	of	multiple	IPs.	Any	successful	ping	will	make	the
server	OK	to	continue	running

Avoiding	Network	Isolation

70

Resource	Manager	Configuration
Apache	ActiveMQ	Artemis	has	its	own	Resource	Manager	for	handling	the	lifespan	of	JTA	transactions.	When	a	transaction	is	started
the	resource	manager	is	notified	and	keeps	a	record	of	the	transaction	and	its	current	state.	It	is	possible	in	some	cases	for	a	transaction
to	be	started	but	then	forgotten	about.	Maybe	the	client	died	and	never	came	back.	If	this	happens	then	the	transaction	will	just	sit	there
indefinitely.

To	cope	with	this	Apache	ActiveMQ	Artemis	can,	if	configured,	scan	for	old	transactions	and	rollback	any	it	finds.	The	default	for	this
is	3000000	milliseconds	(5	minutes),	i.e.	any	transactions	older	than	5	minutes	are	removed.	This	timeout	can	be	changed	by	editing	the
	transaction-timeout		property	in		broker.xml		(value	must	be	in	milliseconds).	The	property		transaction-timeout-scan-period	
configures	how	often,	in	milliseconds,	to	scan	for	old	transactions.

Please	note	that	Apache	ActiveMQ	Artemis	will	not	unilaterally	rollback	any	XA	transactions	in	a	prepared	state	-	this	must	be
heuristically	rolled	back	via	the	management	API	if	you	are	sure	they	will	never	be	resolved	by	the	transaction	manager.

Resource	Manager	Configuration

71

Flow	Control
Flow	control	is	used	to	limit	the	flow	of	data	between	a	client	and	server,	or	a	server	and	another	server	in	order	to	prevent	the	client	or
server	being	overwhelmed	with	data.

Consumer	Flow	Control

This	controls	the	flow	of	data	between	the	server	and	the	client	as	the	client	consumes	messages.	For	performance	reasons	clients
normally	buffer	messages	before	delivering	to	the	consumer	via	the		receive()		method	or	asynchronously	via	a	message	listener.	If	the
consumer	cannot	process	messages	as	fast	as	they	are	being	delivered	and	stored	in	the	internal	buffer,	then	you	could	end	up	with	a
situation	where	messages	would	keep	building	up	possibly	causing	out	of	memory	on	the	client	if	they	cannot	be	processed	in	time.

Window-Based	Flow	Control

By	default,	Apache	ActiveMQ	Artemis	consumers	buffer	messages	from	the	server	in	a	client	side	buffer	before	the	client	consumes
them.	This	improves	performance:	otherwise	every	time	the	client	consumes	a	message,	Apache	ActiveMQ	Artemis	would	have	to	go
the	server	to	request	the	next	message.	In	turn,	this	message	would	then	get	sent	to	the	client	side,	if	one	was	available.

A	network	round	trip	would	be	involved	for	every	message	and	considerably	reduce	performance.

To	prevent	this,	Apache	ActiveMQ	Artemis	pre-fetches	messages	into	a	buffer	on	each	consumer.	The	total	maximum	size	of	messages
(in	bytes)	that	will	be	buffered	on	each	consumer	is	determined	by	the		consumerWindowSize		parameter.

By	default,	the		consumerWindowSize		is	set	to	1	MiB	(1024	*	1024	bytes).

The	value	can	be:

	-1		for	an	unbounded	buffer

	0		to	not	buffer	any	messages.

	>0		for	a	buffer	with	the	given	maximum	size	in	bytes.

Setting	the	consumer	window	size	can	considerably	improve	performance	depending	on	the	messaging	use	case.	As	an	example,	let's
consider	the	two	extremes:

Fast	consumers

Fast	consumers	can	process	messages	as	fast	as	they	consume	them	(or	even	faster)

To	allow	fast	consumers,	set	the		consumerWindowSize		to	-1.	This	will	allow	unbounded	message	buffering	on	the	client	side.

Use	this	setting	with	caution:	it	can	overflow	the	client	memory	if	the	consumer	is	not	able	to	process	messages	as	fast	as	it	receives
them.

Slow	consumers

Slow	consumers	takes	significant	time	to	process	each	message	and	it	is	desirable	to	prevent	buffering	messages	on	the	client	side	so	that
they	can	be	delivered	to	another	consumer	instead.

Consider	a	situation	where	a	queue	has	2	consumers;	1	of	which	is	very	slow.	Messages	are	delivered	in	a	round	robin	fashion	to	both
consumers,	the	fast	consumer	processes	all	of	its	messages	very	quickly	until	its	buffer	is	empty.	At	this	point	there	are	still	messages
awaiting	to	be	processed	in	the	buffer	of	the	slow	consumer	thus	preventing	them	being	processed	by	the	fast	consumer.	The	fast
consumer	is	therefore	sitting	idle	when	it	could	be	processing	the	other	messages.

Flow	Control

72

To	allow	slow	consumers,	set	the		consumerWindowSize		to	0	(for	no	buffer	at	all).	This	will	prevent	the	slow	consumer	from	buffering
any	messages	on	the	client	side.	Messages	will	remain	on	the	server	side	ready	to	be	consumed	by	other	consumers.

Setting	this	to	0	can	give	deterministic	distribution	between	multiple	consumers	on	a	queue.

Most	of	the	consumers	cannot	be	clearly	identified	as	fast	or	slow	consumers	but	are	in-between.	In	that	case,	setting	the	value	of
	consumerWindowSize		to	optimize	performance	depends	on	the	messaging	use	case	and	requires	benchmarks	to	find	the	optimal	value,	but
a	value	of	1MiB	is	fine	in	most	cases.

Using	Core	API

If	Apache	ActiveMQ	Artemis	Core	API	is	used,	the	consumer	window	size	is	specified	by		ServerLocator.setConsumerWindowSize()	
method	and	some	of	the		ClientSession.createConsumer()		methods.

Using	JMS

If	JNDI	is	used	on	the	client	to	instantiate	and	look	up	the	connection	factory	the	consumer	window	size	is	configured	in	the	JNDI
context	environment,	e.g.		jndi.properties	.	Here's	a	simple	example	using	the	"ConnectionFactory"	connection	factory	which	is
available	in	the	context	by	default:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?consumerWindowSize=0

If	the	connection	factory	is	directly	instantiated,	the	consumer	window	size	is	specified	by
	ActiveMQConnectionFactory.setConsumerWindowSize()		method.

Please	see	the	examples	for	an	example	which	shows	how	to	configure	Apache	ActiveMQ	Artemis	to	prevent	consumer	buffering	when
dealing	with	slow	consumers.

Rate	limited	flow	control
It	is	also	possible	to	control	the	rate	at	which	a	consumer	can	consume	messages.	This	is	a	form	of	throttling	and	can	be	used	to	make
sure	that	a	consumer	never	consumes	messages	at	a	rate	faster	than	the	rate	specified.

The	rate	must	be	a	positive	integer	to	enable	this	functionality	and	is	the	maximum	desired	message	consumption	rate	specified	in	units
of	messages	per	second.	Setting	this	to		-1		disables	rate	limited	flow	control.	The	default	value	is		-1	.

Please	see	the	examples	chapter	for	a	working	example	of	limiting	consumer	rate.

Using	Core	API

If	the	Apache	ActiveMQ	Artemis	core	API	is	being	used	the	rate	can	be	set	via	the		ServerLocator.setConsumerMaxRate(int
consumerMaxRate)		method	or	alternatively	via	some	of	the		ClientSession.createConsumer()		methods.

Using	JMS

If	JNDI	is	used	to	instantiate	and	look	up	the	connection	factory,	the	max	rate	can	be	configured	in	the	JNDI	context	environment,	e.g.
	jndi.properties	.	Here's	a	simple	example	using	the	"ConnectionFactory"	connection	factory	which	is	available	in	the	context	by
default:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

java.naming.provider.url=tcp://localhost:61616?consumerMaxRate=10

If	the	connection	factory	is	directly	instantiated,	the	max	rate	size	can	be	set	via	the		ActiveMQConnectionFactory.setConsumerMaxRate(int
consumerMaxRate)		method.

Flow	Control

73

Note

Rate	limited	flow	control	can	be	used	in	conjunction	with	window	based	flow	control.	Rate	limited	flow	control	only	effects	how
many	messages	a	client	can	consume	in	a	second	and	not	how	many	messages	are	in	its	buffer.	So	if	you	had	a	slow	rate	limit	and
a	high	window	based	limit	the	clients	internal	buffer	would	soon	fill	up	with	messages.

Please	see	the	examples	chapter	for	an	example	which	shows	how	to	configure	ActiveMQ	Artemis	to	prevent	consumer	buffering	when
dealing	with	slow	consumers.

Producer	flow	control
Apache	ActiveMQ	Artemis	also	can	limit	the	amount	of	data	sent	from	a	client	to	a	server	to	prevent	the	server	being	overwhelmed.

Window	based	flow	control

In	a	similar	way	to	consumer	window	based	flow	control,	Apache	ActiveMQ	Artemis	producers,	by	default,	can	only	send	messages	to
an	address	as	long	as	they	have	sufficient	credits	to	do	so.	The	amount	of	credits	required	to	send	a	message	is	given	by	the	size	of	the
message.

As	producers	run	low	on	credits	they	request	more	from	the	server,	when	the	server	sends	them	more	credits	they	can	send	more
messages.

The	amount	of	credits	a	producer	requests	in	one	go	is	known	as	the	window	size.

The	window	size	therefore	determines	the	amount	of	bytes	that	can	be	in-flight	at	any	one	time	before	more	need	to	be	requested	-	this
prevents	the	remoting	connection	from	getting	overloaded.

Using	Core	API

If	the	Apache	ActiveMQ	Artemis	core	API	is	being	used,	window	size	can	be	set	via	the		ServerLocator.setProducerWindowSize(int
producerWindowSize)		method.

Using	JMS

If	JNDI	is	used	to	instantiate	and	look	up	the	connection	factory,	the	producer	window	size	can	be	configured	in	the	JNDI	context
environment,	e.g.		jndi.properties	.	Here's	a	simple	example	using	the	"ConnectionFactory"	connection	factory	which	is	available	in	the
context	by	default:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?producerWindowSize=10

If	the	connection	factory	is	directly	instantiated,	the	producer	window	size	can	be	set	via	the
	ActiveMQConnectionFactory.setProducerWindowSize(int	producerWindowSize)		method.

Blocking	producer	window	based	flow	control	using	CORE	protocol

When	using	the	CORE	protocol	(used	by	both	the	Artemis	Core	Client	and	Artemis	JMS	Client)	the	server	will	always	aim	give	the
same	number	of	credits	as	have	been	requested.	However,	it	is	also	possible	to	set	a	maximum	size	on	any	address,	and	the	server	will
never	send	more	credits	to	any	one	producer	than	what	is	available	according	to	the	address's	upper	memory	limit.	Although	a	single
producer	will	be	issued	more	credits	than	available	(at	the	time	of	issue)	it	is	possible	that	more	than	1	producer	be	associated	with	the
same	address	and	so	it	is	theoretically	possible	that	more	credits	are	allocated	across	total	producers	than	what	is	available.	It	is
therefore	possible	to	go	over	the	address	limit	by	approximately:

'''total	number	of	producers	on	address	*	producer	window	size'''

Flow	Control

74

For	example,	if	I	have	a	JMS	queue	called	"myqueue",	I	could	set	the	maximum	memory	size	to	10MiB,	and	the	the	server	will	control
the	number	of	credits	sent	to	any	producers	which	are	sending	any	messages	to	myqueue	such	that	the	total	messages	in	the	queue	never
exceeds	10MiB.

When	the	address	gets	full,	producers	will	block	on	the	client	side	until	more	space	frees	up	on	the	address,	i.e.	until	messages	are
consumed	from	the	queue	thus	freeing	up	space	for	more	messages	to	be	sent.

We	call	this	blocking	producer	flow	control,	and	it's	an	efficient	way	to	prevent	the	server	running	out	of	memory	due	to	producers
sending	more	messages	than	can	be	handled	at	any	time.

It	is	an	alternative	approach	to	paging,	which	does	not	block	producers	but	instead	pages	messages	to	storage.

To	configure	an	address	with	a	maximum	size	and	tell	the	server	that	you	want	to	block	producers	for	this	address	if	it	becomes	full,	you
need	to	define	an	AddressSettings	(Configuring	Queues	Via	Address	Settings)	block	for	the	address	and	specify		max-size-bytes		and
	address-full-policy	

The	address	block	applies	to	all	queues	registered	to	that	address.	I.e.	the	total	memory	for	all	queues	bound	to	that	address	will	not
exceed		max-size-bytes	.	In	the	case	of	JMS	topics	this	means	the	total	memory	of	all	subscriptions	in	the	topic	won't	exceed	max-size-
bytes.

Here's	an	example:

<address-settings>

			<address-setting	match="jms.queue.exampleQueue">

						<max-size-bytes>100000</max-size-bytes>

						<address-full-policy>BLOCK</address-full-policy>

			</address-setting>

</address-settings>

The	above	example	would	set	the	max	size	of	the	JMS	queue	"exampleQueue"	to	be	100000	bytes	and	would	block	any	producers
sending	to	that	address	to	prevent	that	max	size	being	exceeded.

Note	the	policy	must	be	set	to		BLOCK		to	enable	blocking	producer	flow	control.

Note

Note	that	in	the	default	configuration	all	addresses	are	set	to	block	producers	after	10	MiB	of	message	data	is	in	the	address.	This
means	you	cannot	send	more	than	10MiB	of	message	data	to	an	address	without	it	being	consumed	before	the	producers	will	be
blocked.	If	you	do	not	want	this	behaviour	increase	the		max-size-bytes		parameter	or	change	the	address	full	message	policy.

Note

Producer	credits	are	allocated	from	the	broker	to	the	client.	Flow	control	credit	checking	(i.e.	checking	a	producer	has	enough
credit)	is	done	on	the	client	side	only.	It	is	possible	for	the	broker	to	over	allocate	credits,	like	in	the	multiple	producer	scenario
outlined	above.	It	is	also	possible	for	a	misbehaving	client	to	ignore	the	flow	control	credits	issued	by	the	broker	and	continue
sending	with	out	sufficient	credit.

Blocking	producer	window	based	flow	control	using	AMQP

Apache	ActiveMQ	Artemis	ships	with	out	of	the	box	with	2	protocols	that	support	flow	control.	Artemis	CORE	protocol	and	AMQP.
Both	protocols	implement	flow	control	slightly	differently	and	therefore	address	full	BLOCK	policy	behaves	slightly	different	for
clients	that	use	each	protocol	respectively.

As	explained	earlier	in	this	chapter	the	CORE	protocol	uses	a	producer	window	size	flow	control	system.	Where	credits	(representing
bytes)	are	allocated	to	producers,	if	a	producer	wants	to	send	a	message	it	should	wait	until	it	has	enough	byte	credits	available	for	it	to
send.	AMQP	flow	control	credits	are	not	representative	of	bytes	but	instead	represent	the	number	of	messages	a	producer	is	permitted
to	send	(regardless	of	the	message	size).

BLOCK	for	AMQP	works	mostly	in	the	same	way	as	the	producer	window	size	mechanism	above.	Artemis	will	issue	100	credits	to	a
client	at	a	time	and	refresh	them	when	the	clients	credits	reaches	30.	The	broker	will	stop	issuing	credits	once	an	address	is	full.
However,	since	AMQP	credits	represent	whole	messages	and	not	bytes,	it	would	be	possible	in	some	scenarios	for	an	AMQP	client	to

Flow	Control

75

significantly	exceed	an	address	upper	bound	should	the	broker	continue	accepting	messages	until	the	clients	credits	are	exhausted.	For
this	reason	there	is	an	additional	parameter	available	on	address	settings	that	specifies	an	upper	bound	on	an	address	size	in	bytes.	Once
this	upper	bound	is	reach	Artemis	will	start	rejecting	AMQP	messages.	This	limit	is	the	max-size-bytes-reject-threshold	and	is	by
default	set	to	-1	(or	no	limit).	This	is	additional	parameter	allows	a	kind	of	soft	and	hard	limit,	in	normal	circumstances	the	broker	will
utilize	the	max-size-bytes	parameter	using	using	flow	control	to	put	back	pressure	on	the	client,	but	will	protect	the	broker	by	rejecting
messages	once	the	address	size	is	reached.

Rate	limited	flow	control

Apache	ActiveMQ	Artemis	also	allows	the	rate	a	producer	can	emit	message	to	be	limited,	in	units	of	messages	per	second.	By
specifying	such	a	rate,	Apache	ActiveMQ	Artemis	will	ensure	that	producer	never	produces	messages	at	a	rate	higher	than	that
specified.

The	rate	must	be	a	positive	integer	to	enable	this	functionality	and	is	the	maximum	desired	message	consumption	rate	specified	in	units
of	messages	per	second.	Setting	this	to		-1		disables	rate	limited	flow	control.	The	default	value	is		-1	.

Please	see	the	examples	chapter	for	a	working	example	of	limiting	producer	rate.

Using	Core	API

If	the	Apache	ActiveMQ	Artemis	core	API	is	being	used	the	rate	can	be	set	via	the		ServerLocator.setProducerMaxRate(int
producerMaxRate)		method	or	alternatively	via	some	of	the		ClientSession.createProducer()		methods.

Using	JMS

If	JNDI	is	used	to	instantiate	and	look	up	the	connection	factory,	the	max	rate	size	can	be	configured	in	the	JNDI	context	environment,
e.g.		jndi.properties	.	Here's	a	simple	example	using	the	"ConnectionFactory"	connection	factory	which	is	available	in	the	context	by
default:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?producerMaxRate=10

If	the	connection	factory	is	directly	instantiated,	the	max	rate	size	can	be	set	via	the		ActiveMQConnectionFactory.setProducerMaxRate(int
producerMaxRate)		method.

Flow	Control

76

Guarantees	of	sends	and	commits

Guarantees	of	Transaction	Completion

When	committing	or	rolling	back	a	transaction	with	Apache	ActiveMQ	Artemis,	the	request	to	commit	or	rollback	is	sent	to	the	server,
and	the	call	will	block	on	the	client	side	until	a	response	has	been	received	from	the	server	that	the	commit	or	rollback	was	executed.

When	the	commit	or	rollback	is	received	on	the	server,	it	will	be	committed	to	the	journal,	and	depending	on	the	value	of	the	parameter
	journal-sync-transactional		the	server	will	ensure	that	the	commit	or	rollback	is	durably	persisted	to	storage	before	sending	the
response	back	to	the	client.	If	this	parameter	has	the	value		false		then	commit	or	rollback	may	not	actually	get	persisted	to	storage
until	some	time	after	the	response	has	been	sent	to	the	client.	In	event	of	server	failure	this	may	mean	the	commit	or	rollback	never	gets
persisted	to	storage.	The	default	value	of	this	parameter	is		true		so	the	client	can	be	sure	all	transaction	commits	or	rollbacks	have	been
persisted	to	storage	by	the	time	the	call	to	commit	or	rollback	returns.

Setting	this	parameter	to		false		can	improve	performance	at	the	expense	of	some	loss	of	transaction	durability.

This	parameter	is	set	in		broker.xml	

Guarantees	of	Non	Transactional	Message	Sends

If	you	are	sending	messages	to	a	server	using	a	non	transacted	session,	Apache	ActiveMQ	Artemis	can	be	configured	to	block	the	call	to
send	until	the	message	has	definitely	reached	the	server,	and	a	response	has	been	sent	back	to	the	client.	This	can	be	configured
individually	for	durable	and	non-durable	messages,	and	is	determined	by	the	following	two	parameters:

	BlockOnDurableSend	.	If	this	is	set	to		true		then	all	calls	to	send	for	durable	messages	on	non	transacted	sessions	will	block	until
the	message	has	reached	the	server,	and	a	response	has	been	sent	back.	The	default	value	is		true	.

	BlockOnNonDurableSend	.	If	this	is	set	to		true		then	all	calls	to	send	for	non-durable	messages	on	non	transacted	sessions	will	block
until	the	message	has	reached	the	server,	and	a	response	has	been	sent	back.	The	default	value	is		false	.

Setting	block	on	sends	to		true		can	reduce	performance	since	each	send	requires	a	network	round	trip	before	the	next	send	can	be
performed.	This	means	the	performance	of	sending	messages	will	be	limited	by	the	network	round	trip	time	(RTT)	of	your	network,
rather	than	the	bandwidth	of	your	network.	For	better	performance	we	recommend	either	batching	many	messages	sends	together	in	a
transaction	since	with	a	transactional	session,	only	the	commit	/	rollback	blocks	not	every	send,	or,	using	Apache	ActiveMQ	Artemis's
advanced	asynchronous	send	acknowledgements	feature	described	in	Asynchronous	Send	Acknowledgements.

If	you	are	using	JMS	and	JNDI	then	using	the	elements		blockOnDurableSend		and		blockOnNonDurableSend	.	If	you're	using	JMS	but	not
using	JNDI	then	you	can	set	these	values	directly	on	the		ActiveMQConnectionFactory		instance	using	the	appropriate	setter	methods.

If	you're	using	core	you	can	set	these	values	directly	on	the		ClientSessionFactory		instance	using	the	appropriate	setter	methods.

When	the	server	receives	a	message	sent	from	a	non	transactional	session,	and	that	message	is	durable	and	the	message	is	routed	to	at
least	one	durable	queue,	then	the	server	will	persist	the	message	in	permanent	storage.	If	the	journal	parameter		journal-sync-non-
transactional		is	set	to		true		the	server	will	not	send	a	response	back	to	the	client	until	the	message	has	been	persisted	and	the	server
has	a	guarantee	that	the	data	has	been	persisted	to	disk.	The	default	value	for	this	parameter	is		true	.

Guarantees	of	Non	Transactional	Acknowledgements
If	you	are	acknowledging	the	delivery	of	a	message	at	the	client	side	using	a	non	transacted	session,	Apache	ActiveMQ	Artemis	can	be
configured	to	block	the	call	to	acknowledge	until	the	acknowledge	has	definitely	reached	the	server,	and	a	response	has	been	sent	back	to
the	client.	This	is	configured	with	the	parameter		BlockOnAcknowledge	.	If	this	is	set	to		true		then	all	calls	to	acknowledge	on	non
transacted	sessions	will	block	until	the	acknowledge	has	reached	the	server,	and	a	response	has	been	sent	back.	You	might	want	to	set
this	to		true		if	you	want	to	implement	a	strict	at	most	once	delivery	policy.	The	default	value	is		false	

Guarantees	of	sends	and	commits

77

Asynchronous	Send	Acknowledgements

If	you	are	using	a	non	transacted	session	but	want	a	guarantee	that	every	message	sent	to	the	server	has	reached	it,	then,	as	discussed	in
Guarantees	of	Non	Transactional	Message	Sends,	you	can	configure	Apache	ActiveMQ	Artemis	to	block	the	call	to	send	until	the
server	has	received	the	message,	persisted	it	and	sent	back	a	response.	This	works	well	but	has	a	severe	performance	penalty	-	each	call
to	send	needs	to	block	for	at	least	the	time	of	a	network	round	trip	(RTT)	-	the	performance	of	sending	is	thus	limited	by	the	latency	of
the	network,	not	limited	by	the	network	bandwidth.

Let's	do	a	little	bit	of	maths	to	see	how	severe	that	is.	We'll	consider	a	standard	1Gib	ethernet	network	with	a	network	round	trip
between	the	server	and	the	client	of	0.25	ms.

With	a	RTT	of	0.25	ms,	the	client	can	send	at	most	1000/	0.25	=	4000	messages	per	second	if	it	blocks	on	each	message	send.

If	each	message	is	<	1500	bytes	and	a	standard	1500	bytes	MTU	(Maximum	Transmission	Unit)	size	is	used	on	the	network,	then	a
1GiB	network	has	a	theoretical	upper	limit	of	(1024	*	1024	*	1024	/	8)	/	1500	=	89478	messages	per	second	if	messages	are	sent
without	blocking!	These	figures	aren't	an	exact	science	but	you	can	clearly	see	that	being	limited	by	network	RTT	can	have	serious	effect
on	performance.

To	remedy	this,	Apache	ActiveMQ	Artemis	provides	an	advanced	new	feature	called	asynchronous	send	acknowledgements.	With	this
feature,	Apache	ActiveMQ	Artemis	can	be	configured	to	send	messages	without	blocking	in	one	direction	and	asynchronously	getting
acknowledgement	from	the	server	that	the	messages	were	received	in	a	separate	stream.	By	de-coupling	the	send	from	the
acknowledgement	of	the	send,	the	system	is	not	limited	by	the	network	RTT,	but	is	limited	by	the	network	bandwidth.	Consequently
better	throughput	can	be	achieved	than	is	possible	using	a	blocking	approach,	while	at	the	same	time	having	absolute	guarantees	that
messages	have	successfully	reached	the	server.

The	window	size	for	send	acknowledgements	is	determined	by	the	confirmation-window-size	parameter	on	the	connection	factory	or
client	session	factory.	Please	see	Client	Reconnection	and	Session	Reattachment	for	more	info	on	this.

Asynchronous	Send	Acknowledgements
To	use	the	feature	using	the	core	API,	you	implement	the	interface
	org.apache.activemq.artemis.api.core.client.SendAcknowledgementHandler		and	set	a	handler	instance	on	your		ClientSession	.

Then,	you	just	send	messages	as	normal	using	your		ClientSession	,	and	as	messages	reach	the	server,	the	server	will	send	back	an
acknowledgement	of	the	send	asynchronously,	and	some	time	later	you	are	informed	at	the	client	side	by	Apache	ActiveMQ	Artemis
calling	your	handler's		sendAcknowledged(ClientMessage	message)		method,	passing	in	a	reference	to	the	message	that	was	sent.

To	enable	asynchronous	send	acknowledgements	you	must	make	sure		confirmationWindowSize		is	set	to	a	positive	integer	value,	e.g.
10MiB

Please	see	the	examples	chapter	for	a	full	working	example.

Guarantees	of	sends	and	commits

78

Message	Redelivery	and	Undelivered	Messages
Messages	can	be	delivered	unsuccessfully	(e.g.	if	the	transacted	session	used	to	consume	them	is	rolled	back).	Such	a	message	goes	back
to	its	queue	ready	to	be	redelivered.	However,	this	means	it	is	possible	for	a	message	to	be	delivered	again	and	again	without	success
thus	remaining	in	the	queue	indefinitely,	clogging	the	system.

There	are	2	ways	to	deal	with	these	undelivered	messages:

Delayed	redelivery.

It	is	possible	to	delay	messages	redelivery.	This	gives	the	client	some	time	to	recover	from	any	transient	failures	and	to	prevent
overloading	its	network	or	CPU	resources.

Dead	Letter	Address.

It	is	also	possible	to	configure	a	dead	letter	address	so	that	after	a	specified	number	of	unsuccessful	deliveries,	messages	are
removed	from	their	queue	and	sent	to	the	dead	letter	address.	These	messages	will	not	be	delivered	again	from	this	queue.

Both	options	can	be	combined	for	maximum	flexibility.

Delayed	Redelivery

Delaying	redelivery	can	often	be	useful	in	cases	where	clients	regularly	fail	or	rollback.	Without	a	delayed	redelivery,	the	system	can	get
into	a	"thrashing"	state,	with	delivery	being	attempted,	the	client	rolling	back,	and	delivery	being	re-attempted	ad	infinitum	in	quick
succession,	consuming	valuable	CPU	and	network	resources.

Configuring	Delayed	Redelivery

Delayed	redelivery	is	defined	in	the	address-setting	configuration:

<!--	delay	redelivery	of	messages	for	5s	-->

<address-setting	match="jms.queue.exampleQueue">

<!--	default	is	1.0	-->

<redelivery-delay-multiplier>1.5</redelivery-delay-multiplier>

<!--	default	is	0	(no	delay)	-->

<redelivery-delay>5000</redelivery-delay>

<!--	default	is	redelivery-delay	*	10	-->

<max-redelivery-delay>50000</max-redelivery-delay>

</address-setting>

If	a		redelivery-delay		is	specified,	Apache	ActiveMQ	Artemis	will	wait	this	delay	before	redelivering	the	messages.

By	default,	there	is	no	redelivery	delay	(redelivery-delay	is	set	to	0).

Other	subsequent	messages	will	be	delivery	regularly,	only	the	cancelled	message	will	be	sent	asynchronously	back	to	the	queue	after	the
delay.

You	can	specify	a	multiplier	(the		redelivery-delay-multiplier)	that	will	take	effect	on	top	of	the		redelivery-delay	.	Each	time	a
message	is	redelivered	the	delay	period	will	be	equal	to	the	previous	delay		redelivery-delay-multiplier	.	A	max-redelivery-delay	can	be
set	to	prevent	the	delay	from	becoming	too	large.	The	max-redelivery-delay	is	defaulted	to	redelivery-delay	\	10.

Example:

-	redelivery-delay=5000,	redelivery-delay-multiplier=2,	max-redelivery-delay=15000

1.	Delivery	Attempt	1.	(Unsuccessful)

2.	Wait	Delay	Period:	5000

3.	Delivery	Attempt	2.	(Unsuccessful)

Message	Redelivery	and	Undelivered	Messages

79

4.	Wait	Delay	Period:	10000																			//	(5000		*	2)	<	max-delay-period.		Use	10000

5.	Delivery	Attempt	3:	(Unsuccessful)

6.	Wait	Delay	Period:	15000																			//	(10000	*	2)	>	max-delay-period:		Use	max-delay-delivery

Address	wildcards	can	be	used	to	configure	redelivery	delay	for	a	set	of	addresses	(see	Understanding	the	Wildcard	Syntax),	so	you
don't	have	to	specify	redelivery	delay	individually	for	each	address.

Example

See	the	examples	chapter	for	an	example	which	shows	how	delayed	redelivery	is	configured	and	used	with	JMS.

Dead	Letter	Addresses

To	prevent	a	client	infinitely	receiving	the	same	undelivered	message	(regardless	of	what	is	causing	the	unsuccessful	deliveries),
messaging	systems	define	dead	letter	addresses:	after	a	specified	unsuccessful	delivery	attempts,	the	message	is	removed	from	its	queue
and	sent	to	a	dead	letter	address.

Any	such	messages	can	then	be	diverted	to	queue(s)	where	they	can	later	be	perused	by	the	system	administrator	for	action	to	be	taken.

Apache	ActiveMQ	Artemis's	addresses	can	be	assigned	a	dead	letter	address.	Once	the	messages	have	been	unsuccessfully	delivered	for
a	given	number	of	attempts,	they	are	removed	from	their	queue	and	sent	to	the	relevant	dead	letter	address.	These	dead	letter	messages
can	later	be	consumed	from	the	dead	letter	address	for	further	inspection.

Configuring	Dead	Letter	Addresses

Dead	letter	address	is	defined	in	the	address-setting	configuration:

<!--	undelivered	messages	in	exampleQueue	will	be	sent	to	the	dead	letter	address

deadLetterQueue	after	3	unsuccessful	delivery	attempts	-->

<address-setting	match="jms.queue.exampleQueue">

<dead-letter-address>jms.queue.deadLetterQueue</dead-letter-address>

<max-delivery-attempts>3</max-delivery-attempts>

</address-setting>

If	a		dead-letter-address		is	not	specified,	messages	will	removed	after		max-delivery-attempts		unsuccessful	attempts.

By	default,	messages	are	redelivered	10	times	at	the	maximum.	Set		max-delivery-attempts		to	-1	for	infinite	redeliveries.

A		dead	letter	address		can	be	set	globally	for	a	set	of	matching	addresses	and	you	can	set		max-delivery-attempts		to	-1	for	a	specific
address	setting	to	allow	infinite	redeliveries	only	for	this	address.

Address	wildcards	can	be	used	to	configure	dead	letter	settings	for	a	set	of	addresses	(see	Understanding	the	Wildcard	Syntax).

Dead	Letter	Properties

Dead	letter	messages	which	are	consumed	from	a	dead	letter	address	have	the	following	properties:

	_AMQ_ORIG_ADDRESS	

a	String	property	containing	the	original	address	of	the	dead	letter	message

	_AMQ_ORIG_QUEUE	

a	String	property	containing	the	original	queue	of	the	dead	letter	message

Example

See:	Dead	Letter	section	of	the	Examples	for	an	example	that	shows	how	dead	letter	is	configured	and	used	with	JMS.

Message	Redelivery	and	Undelivered	Messages

80

Delivery	Count	Persistence

In	normal	use,	Apache	ActiveMQ	Artemis	does	not	update	delivery	count	persistently	until	a	message	is	rolled	back	(i.e.	the	delivery
count	is	not	updated	before	the	message	is	delivered	to	the	consumer).	In	most	messaging	use	cases,	the	messages	are	consumed,
acknowledged	and	forgotten	as	soon	as	they	are	consumed.	In	these	cases,	updating	the	delivery	count	persistently	before	delivering	the
message	would	add	an	extra	persistent	step	for	each	message	delivered,	implying	a	significant	performance	penalty.

However,	if	the	delivery	count	is	not	updated	persistently	before	the	message	delivery	happens,	in	the	event	of	a	server	crash,	messages
might	have	been	delivered	but	that	will	not	have	been	reflected	in	the	delivery	count.	During	the	recovery	phase,	the	server	will	not	have
knowledge	of	that	and	will	deliver	the	message	with		redelivered		set	to		false		while	it	should	be		true	.

As	this	behavior	breaks	strict	JMS	semantics,	Apache	ActiveMQ	Artemis	allows	to	persist	delivery	count	before	message	delivery	but
this	feature	is	disabled	by	default	due	to	performance	implications.

To	enable	it,	set		persist-delivery-count-before-delivery		to		true		in		broker.xml	:

<persist-delivery-count-before-delivery>true</persist-delivery-count-before-delivery>

Message	Redelivery	and	Undelivered	Messages

81

Message	Expiry
Messages	can	be	set	with	an	optional	time	to	live	when	sending	them.

Apache	ActiveMQ	Artemis	will	not	deliver	a	message	to	a	consumer	after	it's	time	to	live	has	been	exceeded.	If	the	message	hasn't	been
delivered	by	the	time	that	time	to	live	is	reached	the	server	can	discard	it.

Apache	ActiveMQ	Artemis's	addresses	can	be	assigned	a	expiry	address	so	that,	when	messages	are	expired,	they	are	removed	from	the
queue	and	sent	to	the	expiry	address.	Many	different	queues	can	be	bound	to	an	expiry	address.	These	expired	messages	can	later	be
consumed	for	further	inspection.

Message	Expiry
Using	Apache	ActiveMQ	Artemis	Core	API,	you	can	set	an	expiration	time	directly	on	the	message:

//	message	will	expire	in	5000ms	from	now

message.setExpiration(System.currentTimeMillis()	+	5000);

JMS	MessageProducer	allows	to	set	a	TimeToLive	for	the	messages	it	sent:

//	messages	sent	by	this	producer	will	be	retained	for	5s	(5000ms)	before	expiration

producer.setTimeToLive(5000);

Expired	messages	which	are	consumed	from	an	expiry	address	have	the	following	properties:

	_AMQ_ORIG_ADDRESS	

a	String	property	containing	the	original	address	of	the	expired	message

	_AMQ_ORIG_QUEUE	

a	String	property	containing	the	original	queue	of	the	expired	message

	_AMQ_ACTUAL_EXPIRY	

a	Long	property	containing	the	actual	expiration	time	of	the	expired	message

Configuring	Expiry	Addresses
Expiry	address	are	defined	in	the	address-setting	configuration:

<!--	expired	messages	in	exampleQueue	will	be	sent	to	the	expiry	address	expiryQueue	-->

<address-setting	match="jms.queue.exampleQueue">

			<expiry-address>jms.queue.expiryQueue</expiry-address>

</address-setting>

If	messages	are	expired	and	no	expiry	address	is	specified,	messages	are	simply	removed	from	the	queue	and	dropped.	Address
wildcards	can	be	used	to	configure	expiry	address	for	a	set	of	addresses	(see	Understanding	the	Wildcard	Syntax).

Configuring	The	Expiry	Reaper	Thread

A	reaper	thread	will	periodically	inspect	the	queues	to	check	if	messages	have	expired.

The	reaper	thread	can	be	configured	with	the	following	properties	in		broker.xml	

Message	Expiry

82

	message-expiry-scan-period	

How	often	the	queues	will	be	scanned	to	detect	expired	messages	(in	milliseconds,	default	is	30000ms,	set	to		-1		to	disable	the
reaper	thread)

	message-expiry-thread-priority	

The	reaper	thread	priority	(it	must	be	between	1	and	10,	10	being	the	highest	priority,	default	is	3)

Example

See	the	examples.md	chapter	for	an	example	which	shows	how	message	expiry	is	configured	and	used	with	JMS.

Message	Expiry

83

Large	Messages
Apache	ActiveMQ	Artemis	supports	sending	and	receiving	of	huge	messages,	even	when	the	client	and	server	are	running	with	limited
memory.	The	only	realistic	limit	to	the	size	of	a	message	that	can	be	sent	or	consumed	is	the	amount	of	disk	space	you	have	available.
We	have	tested	sending	and	consuming	messages	up	to	8	GiB	in	size	with	a	client	and	server	running	in	just	50MiB	of	RAM!

To	send	a	large	message,	the	user	can	set	an		InputStream		on	a	message	body,	and	when	that	message	is	sent,	Apache	ActiveMQ
Artemis	will	read	the		InputStream	.	A		FileInputStream		could	be	used	for	example	to	send	a	huge	message	from	a	huge	file	on	disk.

As	the		InputStream		is	read	the	data	is	sent	to	the	server	as	a	stream	of	fragments.	The	server	persists	these	fragments	to	disk	as	it
receives	them	and	when	the	time	comes	to	deliver	them	to	a	consumer	they	are	read	back	of	the	disk,	also	in	fragments	and	sent	down
the	wire.	When	the	consumer	receives	a	large	message	it	initially	receives	just	the	message	with	an	empty	body,	it	can	then	set	an
	OutputStream		on	the	message	to	stream	the	huge	message	body	to	a	file	on	disk	or	elsewhere.	At	no	time	is	the	entire	message	body
stored	fully	in	memory,	either	on	the	client	or	the	server.

Configuring	the	server
Large	messages	are	stored	on	a	disk	directory	on	the	server	side,	as	configured	on	the	main	configuration	file.

The	configuration	property		large-messages-directory		specifies	where	large	messages	are	stored.

<configuration	xmlns="urn:activemq"

			xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

			xsi:schemaLocation="urn:activemq	/schema/artemis-server.xsd">

...

<large-messages-directory>/data/large-messages</large-messages-directory>

...

</configuration

By	default	the	large	message	directory	is		data/largemessages	

For	the	best	performance	we	recommend	large	messages	directory	is	stored	on	a	different	physical	volume	to	the	message	journal	or
paging	directory.

Configuring	Parameters

Any	message	larger	than	a	certain	size	is	considered	a	large	message.	Large	messages	will	be	split	up	and	sent	in	fragments.	This	is
determined	by	the	parameter		minLargeMessageSize	

Note

Apache	ActiveMQ	Artemis	messages	are	encoded	using	2	bytes	per	character	so	if	the	message	data	is	filled	with	ASCII
characters	(which	are	1	byte)	the	size	of	the	resulting	Apache	ActiveMQ	Artemis	message	would	roughly	double.	This	is
important	when	calculating	the	size	of	a	"large"	message	as	it	may	appear	to	be	less	than	the		minLargeMessageSize		before	it	is
sent,	but	it	then	turns	into	a	"large"	message	once	it	is	encoded.

The	default	value	is	100KiB.

Using	Core	API

If	the	Apache	ActiveMQ	Artemis	Core	API	is	used,	the	minimal	large	message	size	is	specified	by
	ServerLocator.setMinLargeMessageSize	.

ServerLocator	locator	=	ActiveMQClient.createServerLocatorWithoutHA(new	TransportConfiguration(NettyConnectorFactory.class.get

Name()))

Large	Messages

84

locator.setMinLargeMessageSize(25	*	1024);

ClientSessionFactory	factory	=	ActiveMQClient.createClientSessionFactory();

Configuring	the	transport	directly	from	the	client	side	will	provide	more	information	on	how	to	instantiate	the	session	factory.

Using	JMS

If	JNDI	is	used	to	instantiate	and	look	up	the	connection	factory,	the	minimum	large	message	size	is	configured	in	the	JNDI	context
environment,	e.g.		jndi.properties	.	Here's	a	simple	example	using	the	"ConnectionFactory"	connection	factory	which	is	available	in	the
context	by	default:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?minLargeMessageSize=250000

If	the	connection	factory	is	being	instantiated	directly,	the	minimum	large	message	size	is	specified	by
	ActiveMQConnectionFactory.setMinLargeMessageSize	.

Compressed	Large	Messages

You	can	choose	to	send	large	messages	in	compressed	form	using		compress-large-messages		attributes.

	compressLargeMessages	

If	you	specify	the	boolean	property		compressLargeMessages		on	the		server	locator		or		ConnectionFactory		as	true,	The	system	will
use	the	ZIP	algorithm	to	compress	the	message	body	as	the	message	is	transferred	to	the	server's	side.	Notice	that	there's	no	special
treatment	at	the	server's	side,	all	the	compressing	and	uncompressing	is	done	at	the	client.

If	the	compressed	size	of	a	large	message	is	below		minLargeMessageSize	,	it	is	sent	to	server	as	regular	messages.	This	means	that	the
message	won't	be	written	into	the	server's	large-message	data	directory,	thus	reducing	the	disk	I/O.

\
If	JNDI	is	used	to	instantiate	and	look	up	the	connection	factory,	large	message	compression	can	be	configured	in	the	JNDI	context
environment,	e.g.		jndi.properties	.	Here's	a	simple	example	using	the	"ConnectionFactory"	connection	factory	which	is	available	in	the
context	by	default:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?compressLargeMessages=true

Streaming	large	messages
Apache	ActiveMQ	Artemis	supports	setting	the	body	of	messages	using	input	and	output	streams	(java.lang.io)

These	streams	are	then	used	directly	for	sending	(input	streams)	and	receiving	(output	streams)	messages.

When	receiving	messages	there	are	2	ways	to	deal	with	the	output	stream;	you	may	choose	to	block	while	the	output	stream	is
recovered	using	the	method		ClientMessage.saveOutputStream		or	alternatively	using	the	method		ClientMessage.setOutputstream		which
will	asynchronously	write	the	message	to	the	stream.	If	you	choose	the	latter	the	consumer	must	be	kept	alive	until	the	message	has
been	fully	received.

You	can	use	any	kind	of	stream	you	like.	The	most	common	use	case	is	to	send	files	stored	in	your	disk,	but	you	could	also	send	things
like	JDBC	Blobs,		SocketInputStream	,	things	you	recovered	from		HTTPRequests		etc.	Anything	as	long	as	it	implements
	java.io.InputStream		for	sending	messages	or		java.io.OutputStream		for	receiving	them.

Large	Messages

85

Streaming	over	Core	API

The	following	table	shows	a	list	of	methods	available	at		ClientMessage		which	are	also	available	through	JMS	by	the	use	of	object
properties.

Name Description JMS	Equivalent

setBodyInputStream(InputStream) Set	the	InputStream	used	to	read	a	message	body	when
sending	it. JMS_AMQ_InputStream

setOutputStream(OutputStream) Set	the	OutputStream	that	will	receive	the	body	of	a
message.	This	method	does	not	block. JMS_AMQ_OutputStream

saveOutputStream(OutputStream)
Save	the	body	of	the	message	to	the	`OutputStream`.	It
will	block	until	the	entire	content	is	transferred	to	the
`OutputStream`.

JMS_AMQ_SaveStream

:	org.apache.activemq.artemis.api.core.client.ClientMessage	API

To	set	the	output	stream	when	receiving	a	core	message:

ClientMessage	msg	=	consumer.receive(...);

//	This	will	block	here	until	the	stream	was	transferred

msg.saveOutputStream(someOutputStream);

ClientMessage	msg2	=	consumer.receive(...);

//	This	will	not	wait	the	transfer	to	finish

msg.setOutputStream(someOtherOutputStream);

Set	the	input	stream	when	sending	a	core	message:

ClientMessage	msg	=	session.createMessage();

msg.setInputStream(dataInputStream);

Notice	also	that	for	messages	with	more	than	2GiB	the	getBodySize()	will	return	invalid	values	since	this	is	an	integer	(which	is	also
exposed	to	the	JMS	API).	On	those	cases	you	can	use	the	message	property	_AMQ_LARGE_SIZE.

Streaming	over	JMS

When	using	JMS,	Apache	ActiveMQ	Artemis	maps	the	streaming	methods	on	the	core	API	(see	ClientMessage	API	table	above)	by
setting	object	properties	.	You	can	use	the	method		Message.setObjectProperty		to	set	the	input	and	output	streams.

The		InputStream		can	be	defined	through	the	JMS	Object	Property	JMS_AMQ_InputStream	on	messages	being	sent:

BytesMessage	message	=	session.createBytesMessage();

FileInputStream	fileInputStream	=	new	FileInputStream(fileInput);

BufferedInputStream	bufferedInput	=	new	BufferedInputStream(fileInputStream);

message.setObjectProperty("JMS_AMQ_InputStream",	bufferedInput);

someProducer.send(message);

The		OutputStream		can	be	set	through	the	JMS	Object	Property	JMS_AMQ_SaveStream	on	messages	being	received	in	a	blocking	way.

BytesMessage	messageReceived	=	(BytesMessage)messageConsumer.receive(120000);

File	outputFile	=	new	File("huge_message_received.dat");

Large	Messages

86

FileOutputStream	fileOutputStream	=	new	FileOutputStream(outputFile);

BufferedOutputStream	bufferedOutput	=	new	BufferedOutputStream(fileOutputStream);

//	This	will	block	until	the	entire	content	is	saved	on	disk

messageReceived.setObjectProperty("JMS_AMQ_SaveStream",	bufferedOutput);

Setting	the		OutputStream		could	also	be	done	in	a	non	blocking	way	using	the	property	JMS_AMQ_OutputStream.

//	This	won't	wait	the	stream	to	finish.	You	need	to	keep	the	consumer	active.

messageReceived.setObjectProperty("JMS_AMQ_OutputStream",	bufferedOutput);

Note

When	using	JMS,	Streaming	large	messages	are	only	supported	on		StreamMessage		and		BytesMessage	.

Streaming	Alternative

If	you	choose	not	to	use	the		InputStream		or		OutputStream		capability	of	Apache	ActiveMQ	Artemis	You	could	still	access	the	data
directly	in	an	alternative	fashion.

On	the	Core	API	just	get	the	bytes	of	the	body	as	you	normally	would.

ClientMessage	msg	=	consumer.receive();

byte[]	bytes	=	new	byte[1024];

for	(int	i	=	0	;		i	<	msg.getBodySize();	i	+=	bytes.length)

{

			msg.getBody().readBytes(bytes);

			//	Whatever	you	want	to	do	with	the	bytes

}

If	using	JMS	API,		BytesMessage		and		StreamMessage		also	supports	it	transparently.

BytesMessage	rm	=	(BytesMessage)cons.receive(10000);

byte	data[]	=	new	byte[1024];

for	(int	i	=	0;	i	<	rm.getBodyLength();	i	+=	1024)

{

			int	numberOfBytes	=	rm.readBytes(data);

			//	Do	whatever	you	want	with	the	data

}

Large	message	example
Please	see	the	examples	chapter	for	an	example	which	shows	how	large	message	is	configured	and	used	with	JMS.

Large	Messages

87

Paging
Apache	ActiveMQ	Artemis	transparently	supports	huge	queues	containing	millions	of	messages	while	the	server	is	running	with	limited
memory.

In	such	a	situation	it's	not	possible	to	store	all	of	the	queues	in	memory	at	any	one	time,	so	Apache	ActiveMQ	Artemis	transparently
pages	messages	into	and	out	of	memory	as	they	are	needed,	thus	allowing	massive	queues	with	a	low	memory	footprint.

Apache	ActiveMQ	Artemis	will	start	paging	messages	to	disk,	when	the	size	of	all	messages	in	memory	for	an	address	exceeds	a
configured	maximum	size.

The	default	configuration	from	Artemis	has	destinations	with	paging.

Page	Files

Messages	are	stored	per	address	on	the	file	system.	Each	address	has	an	individual	folder	where	messages	are	stored	in	multiple	files
(page	files).	Each	file	will	contain	messages	up	to	a	max	configured	size	(page-size-bytes).	The	system	will	navigate	on	the	files	as
needed,	and	it	will	remove	the	page	file	as	soon	as	all	the	messages	are	acknowledged	up	to	that	point.

Browsers	will	read	through	the	page-cursor	system.

Consumers	with	selectors	will	also	navigate	through	the	page-files	and	it	will	ignore	messages	that	don't	match	the	criteria.

Warning:	When	you	have	a	queue,	and	consumers	filtering	the	queue	with	a	very	restrictive	selector	you	may	get	into	a	situation
where	you	won't	be	able	to	read	more	data	from	paging	until	you	consume	messages	from	the	queue.

Example:	in	one	consumer	you	make	a	selector	as	'color="red"'	but	you	only	have	one	color	red	1	millions	messages	after	blue,
you	won't	be	able	to	consume	red	until	you	consume	blue	ones.

This	is	different	to	browsing	as	we	will	"browse"	the	entire	queue	looking	for	messages	and	while	we	"depage"	messages	while
feeding	the	queue.

Configuration

You	can	configure	the	location	of	the	paging	folder

Global	paging	parameters	are	specified	on	the	main	configuration	file	(broker.xml).

<configuration	xmlns="urn:activemq"

			xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

			xsi:schemaLocation="urn:activemq	/schema/artemis-server.xsd">

...

<paging-directory>/somewhere/paging-directory</paging-directory>

...

Property	Name	Description	Default

	paging-directory		Where	page	files	are	stored.	Apache	ActiveMQ	Artemis	will	create	one	folder	for	each	address	being	paged	under
this	configured	location.	data/paging

:	Paging	Configuration	Parameters

Paging	Mode

Paging

88

As	soon	as	messages	delivered	to	an	address	exceed	the	configured	size,	that	address	alone	goes	into	page	mode.

Note

Paging	is	done	individually	per	address.	If	you	configure	a	max-size-bytes	for	an	address,	that	means	each	matching	address	will
have	a	maximum	size	that	you	specified.	It	DOES	NOT	mean	that	the	total	overall	size	of	all	matching	addresses	is	limited	to
max-size-bytes.

Configuration
Configuration	is	done	at	the	address	settings,	done	at	the	main	configuration	file	(broker.xml).

<address-settings>

			<address-setting	match="jms.someaddress">

						<max-size-bytes>104857600</max-size-bytes>

						<page-size-bytes>10485760</page-size-bytes>

						<address-full-policy>PAGE</address-full-policy>

			</address-setting>

</address-settings>

This	is	the	list	of	available	parameters	on	the	address	settings.

Property
Name Description Default

`max-
size-
bytes`

What's	the	max	memory	the	address	could	have	before	entering	on	page	mode. -1
(disabled)

`page-
size-
bytes`

The	size	of	each	page	file	used	on	the	paging	system

10MiB
(10	*
1024	*
1024
bytes)

`address-
full-
policy`

This	must	be	set	to	PAGE	for	paging	to	enable.	If	the	value	is	PAGE	then	further	messages	will	be
paged	to	disk.	If	the	value	is	DROP	then	further	messages	will	be	silently	dropped.	If	the	value	is
FAIL	then	the	messages	will	be	dropped	and	the	client	message	producers	will	receive	an	exception.
If	the	value	is	BLOCK	then	client	message	producers	will	block	when	they	try	and	send	further
messages.

PAGE

`page-
max-
cache-
size`

The	system	will	keep	up	to	`page-max-cache-size`	page	files	in	memory	to	optimize	IO	during
paging	navigation. 5

Global	Max	Size
Beyond	the	max-size-bytes	on	the	address	you	can	also	set	the	global-max-size	on	the	main	configuration.	If	you	set	max-size-bytes	=
-1	on	paging	the	global-max-size	can	still	be	used.

When	you	have	more	messages	than	what	is	configured	global-max-size	any	new	produced	message	will	make	that	destination	to	go
through	its	paging	policy.

Dropping	messages

Instead	of	paging	messages	when	the	max	size	is	reached,	an	address	can	also	be	configured	to	just	drop	messages	when	the	address	is
full.

To	do	this	just	set	the		address-full-policy		to		DROP		in	the	address	settings

Paging

89

Dropping	messages	and	throwing	an	exception	to	producers

Instead	of	paging	messages	when	the	max	size	is	reached,	an	address	can	also	be	configured	to	drop	messages	and	also	throw	an
exception	on	the	client-side	when	the	address	is	full.

To	do	this	just	set	the		address-full-policy		to		FAIL		in	the	address	settings

Blocking	producers
Instead	of	paging	messages	when	the	max	size	is	reached,	an	address	can	also	be	configured	to	block	producers	from	sending	further
messages	when	the	address	is	full,	thus	preventing	the	memory	being	exhausted	on	the	server.

When	memory	is	freed	up	on	the	server,	producers	will	automatically	unblock	and	be	able	to	continue	sending.

To	do	this	just	set	the		address-full-policy		to		BLOCK		in	the	address	settings

In	the	default	configuration,	all	addresses	are	configured	to	block	producers	after	10	MiB	of	data	are	in	the	address.

Caution	with	Addresses	with	Multiple	Queues

When	a	message	is	routed	to	an	address	that	has	multiple	queues	bound	to	it,	e.g.	a	JMS	subscription	in	a	Topic,	there	is	only	1	copy	of
the	message	in	memory.	Each	queue	only	deals	with	a	reference	to	this.	Because	of	this	the	memory	is	only	freed	up	once	all	queues
referencing	the	message	have	delivered	it.

If	you	have	a	single	lazy	subscription,	the	entire	address	will	suffer	IO	performance	hit	as	all	the	queues	will	have	messages	being	sent
through	an	extra	storage	on	the	paging	system.

For	example:

An	address	has	10	queues

One	of	the	queues	does	not	deliver	its	messages	(maybe	because	of	a	slow	consumer).

Messages	continually	arrive	at	the	address	and	paging	is	started.

The	other	9	queues	are	empty	even	though	messages	have	been	sent.

In	this	example	all	the	other	9	queues	will	be	consuming	messages	from	the	page	system.	This	may	cause	performance	issues	if	this	is	an
undesirable	state.

Max	Disk	Usage

The	System	will	perform	scans	on	the	disk	to	determine	if	the	disk	is	beyond	a	configured	limit.	These	are	configured	through	'max-disk-
usage'	in	percentage.	Once	that	limit	is	reached	any	message	will	be	blocked.	(unless	the	protocol	doesn't	support	flow	control	on	which
case	there	will	be	an	exception	thrown	and	the	connection	for	those	clients	dropped).

Example

See	the	examples	chapter	for	an	example	which	shows	how	to	use	paging	with	Apache	ActiveMQ	Artemis.

Paging

90

Queue	Attributes
Queue	attributes	can	be	set	in	one	of	two	ways.	Either	by	configuring	them	using	the	configuration	file	or	by	using	the	core	API.	This
chapter	will	explain	how	to	configure	each	attribute	and	what	effect	the	attribute	has.

Predefined	Queues

Queues	can	be	predefined	via	configuration	at	a	core	level	or	at	a	JMS	level.	Firstly	let's	look	at	a	JMS	level.

The	following	shows	a	queue	predefined	in	the	jms	element	of	the		broker.xml		configuration	file.

<queue	name="selectorQueue">

			<selector	string="color='red'"/>

			<durable>true</durable>

</queue>

This	name	attribute	of	queue	defines	the	name	of	the	queue.	When	we	do	this	at	a	jms	level	we	follow	a	naming	convention	so	the	actual
name	of	the	core	queue	will	be		jms.queue.selectorQueue	.

The	selector	element	defines	what	JMS	message	selector	the	predefined	queue	will	have.	Only	messages	that	match	the	selector	will	be
added	to	the	queue.	This	is	an	optional	element	with	a	default	of	null	when	omitted.

The	durable	element	specifies	whether	the	queue	will	be	persisted.	This	again	is	optional	and	defaults	to	true	if	omitted.

Secondly	a	queue	can	be	predefined	at	a	core	level	in	the		broker.xml		file.	The	following	is	an	example.

<queues>

			<queue	name="jms.queue.selectorQueue">

						<address>jms.queue.selectorQueue</address>

						<filter	string="color='red'"/>

						<durable>true</durable>

				</queue>

</queues>

This	is	very	similar	to	the	JMS	configuration,	with	3	real	differences	which	are.

1.	 The	name	attribute	of	queue	is	the	actual	name	used	for	the	queue	with	no	naming	convention	as	in	JMS.

2.	 The	address	element	defines	what	address	is	used	for	routing	messages.

3.	 The	filter	uses	the	Core	filter	syntax	(described	in	filter	Expressions),	not	the	JMS	selector	syntax.

Using	the	API

Queues	can	also	be	created	using	the	core	API	or	the	management	API.

For	the	core	API,	queues	can	be	created	via	the		org.apache.activemq.artemis.api.core.client.ClientSession		interface.	There	are
multiple		createQueue		methods	that	support	setting	all	of	the	previously	mentioned	attributes.	There	is	one	extra	attribute	that	can	be
set	via	this	API	which	is		temporary	.	setting	this	to	true	means	that	the	queue	will	be	deleted	once	the	session	is	disconnected.

Take	a	look	at	Management	for	a	description	of	the	management	API	for	creating	queues.

Configuring	Queues	Via	Address	Settings

There	are	some	attributes	that	are	defined	against	an	address	wildcard	rather	than	a	specific	queue.	Here	an	example	of	an		address-
setting		entry	that	would	be	found	in	the		broker.xml		file.

Queue	Attributes

91

<address-settings>

			<address-setting	match="jms.queue.exampleQueue">

						<dead-letter-address>jms.queue.deadLetterQueue</dead-letter-address>

						<max-delivery-attempts>3</max-delivery-attempts>

						<redelivery-delay>5000</redelivery-delay>

						<expiry-address>jms.queue.expiryQueue</expiry-address>

						<last-value-queue>true</last-value-queue>

						<max-size-bytes>100000</max-size-bytes>

						<page-size-bytes>20000</page-size-bytes>

						<redistribution-delay>0</redistribution-delay>

						<send-to-dla-on-no-route>true</send-to-dla-on-no-route>

						<address-full-policy>PAGE</address-full-policy>

						<slow-consumer-threshold>-1</slow-consumer-threshold>

						<slow-consumer-policy>NOTIFY</slow-consumer-policy>

						<slow-consumer-check-period>5</slow-consumer-check-period>

						<auto-create-jms-queues>true</auto-create-jms-queues>

						<auto-delete-jms-queues>true</auto-delete-jms-queues>

						<auto-create-jms-topics>true</auto-create-jms-topics>

						<auto-delete-jms-topics>true</auto-delete-jms-topics>

			</address-setting>

</address-settings>

The	idea	with	address	settings,	is	you	can	provide	a	block	of	settings	which	will	be	applied	against	any	addresses	that	match	the	string
in	the		match		attribute.	In	the	above	example	the	settings	would	only	be	applied	to	any	addresses	which	exactly	match	the	address
	jms.queue.exampleQueue	,	but	you	can	also	use	wildcards	to	apply	sets	of	configuration	against	many	addresses.	The	wildcard	syntax
used	is	described	here.

For	example,	if	you	used	the		match		string		jms.queue.#		the	settings	would	be	applied	to	all	addresses	which	start	with		jms.queue.	
which	would	be	all	JMS	queues.

The	meaning	of	the	specific	settings	are	explained	fully	throughout	the	user	manual,	however	here	is	a	brief	description	with	a	link	to	the
appropriate	chapter	if	available.

	max-delivery-attempts		defines	how	many	time	a	cancelled	message	can	be	redelivered	before	sending	to	the		dead-letter-address	.	A
full	explanation	can	be	found	here.

	redelivery-delay		defines	how	long	to	wait	before	attempting	redelivery	of	a	cancelled	message.	see	here.

	expiry-address		defines	where	to	send	a	message	that	has	expired.	see	here.

	expiry-delay		defines	the	expiration	time	that	will	be	used	for	messages	which	are	using	the	default	expiration	time	(i.e.	0).	For	example,
if		expiry-delay		is	set	to	"10"	and	a	message	which	is	using	the	default	expiration	time	(i.e.	0)	arrives	then	its	expiration	time	of	"0"	will
be	changed	to	"10."	However,	if	a	message	which	is	using	an	expiration	time	of	"20"	arrives	then	its	expiration	time	will	remain
unchanged.	Setting		expiry-delay		to	"-1"	will	disable	this	feature.	The	default	is	"-1".

	last-value-queue		defines	whether	a	queue	only	uses	last	values	or	not.	see	here.

	max-size-bytes		and		page-size-bytes		are	used	to	set	paging	on	an	address.	This	is	explained	here.

	redistribution-delay		defines	how	long	to	wait	when	the	last	consumer	is	closed	on	a	queue	before	redistributing	any	messages.	see
here.

	send-to-dla-on-no-route	.	If	a	message	is	sent	to	an	address,	but	the	server	does	not	route	it	to	any	queues,	for	example,	there	might	be
no	queues	bound	to	that	address,	or	none	of	the	queues	have	filters	that	match,	then	normally	that	message	would	be	discarded.
However	if	this	parameter	is	set	to	true	for	that	address,	if	the	message	is	not	routed	to	any	queues	it	will	instead	be	sent	to	the	dead
letter	address	(DLA)	for	that	address,	if	it	exists.

	address-full-policy	.	This	attribute	can	have	one	of	the	following	values:	PAGE,	DROP,	FAIL	or	BLOCK	and	determines	what
happens	when	an	address	where		max-size-bytes		is	specified	becomes	full.	The	default	value	is	PAGE.	If	the	value	is	PAGE	then
further	messages	will	be	paged	to	disk.	If	the	value	is	DROP	then	further	messages	will	be	silently	dropped.	If	the	value	is	FAIL	then
further	messages	will	be	dropped	and	an	exception	will	be	thrown	on	the	client-side.	If	the	value	is	BLOCK	then	client	message
producers	will	block	when	they	try	and	send	further	messages.	See	the	following	chapters	for	more	info	Flow	Control,	Paging.

Queue	Attributes

92

	slow-consumer-threshold	.	The	minimum	rate	of	message	consumption	allowed	before	a	consumer	is	considered	"slow."	Measured	in
messages-per-second.	Default	is	-1	(i.e.	disabled);	any	other	valid	value	must	be	greater	than	0.

	slow-consumer-policy	.	What	should	happen	when	a	slow	consumer	is	detected.		KILL		will	kill	the	consumer's	connection	(which	will
obviously	impact	any	other	client	threads	using	that	same	connection).		NOTIFY		will	send	a	CONSUMER_SLOW	management
notification	which	an	application	could	receive	and	take	action	with.	See	slow	consumers	for	more	details	on	this	notification.

	slow-consumer-check-period	.	How	often	to	check	for	slow	consumers	on	a	particular	queue.	Measured	in	seconds.	Default	is	5.	See
slow	consumers	for	more	information	about	slow	consumer	detection.

	auto-create-jms-queues	.	Whether	or	not	the	broker	should	automatically	create	a	JMS	queue	when	a	JMS	message	is	sent	to	a	queue
whose	name	fits	the	address		match		(remember,	a	JMS	queue	is	just	a	core	queue	which	has	the	same	address	and	queue	name)	or	a	JMS
consumer	tries	to	connect	to	a	queue	whose	name	fits	the	address		match	.	Queues	which	are	auto-created	are	durable,	non-temporary,
and	non-transient.	Default	is		true	.

	auto-delete-jms-queues	.	Whether	or	not	the	broker	should	automatically	delete	auto-created	JMS	queues	when	they	have	both	0
consumers	and	0	messages.	Default	is		true	.

	auto-create-jms-topics	.	Whether	or	not	the	broker	should	automatically	create	a	JMS	topic	when	a	JMS	message	is	sent	to	a	topic
whose	name	fits	the	address		match		(remember,	a	JMS	topic	is	just	a	core	address	which	has	one	or	more	core	queues	mapped	to	it)	or	a
JMS	consumer	tries	to	subscribe	to	a	topic	whose	name	fits	the	address		match	.	Default	is		true	.

	auto-delete-jms-topics	.	Whether	or	not	the	broker	should	automatically	delete	auto-created	JMS	topics	once	the	last	subscription	on
the	topic	has	been	closed.	Default	is		true	.

Queue	Attributes

93

Scheduled	Messages
Scheduled	messages	differ	from	normal	messages	in	that	they	won't	be	delivered	until	a	specified	time	in	the	future,	at	the	earliest.

To	do	this,	a	special	property	is	set	on	the	message	before	sending	it.

Scheduled	Delivery	Property

The	property	name	used	to	identify	a	scheduled	message	is		"_AMQ_SCHED_DELIVERY"		(or	the	constant
	Message.HDR_SCHEDULED_DELIVERY_TIME).

The	specified	value	must	be	a	positive		long		corresponding	to	the	time	the	message	must	be	delivered	(in	milliseconds).	An	example	of
sending	a	scheduled	message	using	the	JMS	API	is	as	follows.

TextMessage	message	=	session.createTextMessage("This	is	a	scheduled	message	message	which	will	be	delivered	in	5	sec.");

message.setLongProperty("_AMQ_SCHED_DELIVERY",	System.currentTimeMillis()	+	5000);

producer.send(message);

...

//	message	will	not	be	received	immediately	but	5	seconds	later

TextMessage	messageReceived	=	(TextMessage)	consumer.receive();

Scheduled	messages	can	also	be	sent	using	the	core	API,	by	setting	the	same	property	on	the	core	message	before	sending.

Example

See	the	examples	chapter	for	an	example	which	shows	how	scheduled	messages	can	be	used	with	JMS.

Scheduled	Messages

94

Last-Value	Queues
Last-Value	queues	are	special	queues	which	discard	any	messages	when	a	newer	message	with	the	same	value	for	a	well-defined	Last-
Value	property	is	put	in	the	queue.	In	other	words,	a	Last-Value	queue	only	retains	the	last	value.

A	typical	example	for	Last-Value	queue	is	for	stock	prices,	where	you	are	only	interested	by	the	latest	value	for	a	particular	stock.

Configuring	Last-Value	Queues

Last-value	queues	are	defined	in	the	address-setting	configuration:

<address-setting	match="jms.queue.lastValueQueue">

			<last-value-queue>true</last-value-queue>

</address-setting>

By	default,		last-value-queue		is	false.	Address	wildcards	can	be	used	to	configure	Last-Value	queues	for	a	set	of	addresses	(see	here).

Using	Last-Value	Property

The	property	name	used	to	identify	the	last	value	is		"_AMQ_LVQ_NAME"		(or	the	constant		Message.HDR_LAST_VALUE_NAME		from	the	Core
API).

For	example,	if	two	messages	with	the	same	value	for	the	Last-Value	property	are	sent	to	a	Last-Value	queue,	only	the	latest	message
will	be	kept	in	the	queue:

//	send	1st	message	with	Last-Value	property	set	to	STOCK_NAME

TextMessage	message	=	session.createTextMessage("1st	message	with	Last-Value	property	set");

message.setStringProperty("_AMQ_LVQ_NAME",	"STOCK_NAME");

producer.send(message);

//	send	2nd	message	with	Last-Value	property	set	to	STOCK_NAME

message	=	session.createTextMessage("2nd	message	with	Last-Value	property	set");

message.setStringProperty("_AMQ_LVQ_NAME",	"STOCK_NAME");

producer.send(message);

...

//	only	the	2nd	message	will	be	received:	it	is	the	latest	with

//	the	Last-Value	property	set

TextMessage	messageReceived	=	(TextMessage)messageConsumer.receive(5000);

System.out.format("Received	message:	%s\n",	messageReceived.getText());

Example
See	the	examples	chapter	for	an	example	which	shows	how	last	value	queues	are	configured	and	used	with	JMS.

Last-Value	Queues

95

Message	Grouping
Message	groups	are	sets	of	messages	that	have	the	following	characteristics:

Messages	in	a	message	group	share	the	same	group	id,	i.e.	they	have	same	group	identifier	property	(JMSXGroupID		for	JMS,
	_AMQ_GROUP_ID		for	Apache	ActiveMQ	Artemis	Core	API).

Messages	in	a	message	group	are	always	consumed	by	the	same	consumer,	even	if	there	are	many	consumers	on	a	queue.	They	pin
all	messages	with	the	same	group	id	to	the	same	consumer.	If	that	consumer	closes	another	consumer	is	chosen	and	will	receive	all
messages	with	the	same	group	id.

Message	groups	are	useful	when	you	want	all	messages	for	a	certain	value	of	the	property	to	be	processed	serially	by	the	same
consumer.

An	example	might	be	orders	for	a	certain	stock.	You	may	want	orders	for	any	particular	stock	to	be	processed	serially	by	the	same
consumer.	To	do	this	you	can	create	a	pool	of	consumers	(perhaps	one	for	each	stock,	but	less	will	work	too),	then	set	the	stock	name	as
the	value	of	the	_AMQ_GROUP_ID	property.

This	will	ensure	that	all	messages	for	a	particular	stock	will	always	be	processed	by	the	same	consumer.

Note

Grouped	messages	can	impact	the	concurrent	processing	of	non-grouped	messages	due	to	the	underlying	FIFO	semantics	of	a
queue.	For	example,	if	there	is	a	chunk	of	100	grouped	messages	at	the	head	of	a	queue	followed	by	1,000	non-grouped	messages
then	all	the	grouped	messages	will	need	to	be	sent	to	the	appropriate	client	(which	is	consuming	those	grouped	messages	serially)
before	any	of	the	non-grouped	messages	can	be	consumed.	The	functional	impact	in	this	scenario	is	a	temporary	suspension	of
concurrent	message	processing	while	all	the	grouped	messages	are	processed.	This	can	be	a	performance	bottleneck	so	keep	it	in
mind	when	determining	the	size	of	your	message	groups,	and	consider	whether	or	not	you	should	isolate	your	grouped	messages
from	your	non-grouped	messages.

Using	Core	API
The	property	name	used	to	identify	the	message	group	is		"_AMQ_GROUP_ID"		(or	the	constant		MessageImpl.HDR_GROUP_ID).	Alternatively,
you	can	set		autogroup		to	true	on	the		SessionFactory		which	will	pick	a	random	unique	id.

Using	JMS
The	property	name	used	to	identify	the	message	group	is		JMSXGroupID	.

	//	send	2	messages	in	the	same	group	to	ensure	the	same

	//	consumer	will	receive	both

	Message	message	=	...

	message.setStringProperty("JMSXGroupID",	"Group-0");

	producer.send(message);

	message	=	...

	message.setStringProperty("JMSXGroupID",	"Group-0");

	producer.send(message);

Alternatively,	you	can	set		autogroup		to	true	on	the		ActiveMQConnectonFactory		which	will	pick	a	random	unique	id.	This	can	also	be	set
in	the	JNDI	context	environment,	e.g.		jndi.properties	.	Here's	a	simple	example	using	the	"ConnectionFactory"	connection	factory
which	is	available	in	the	context	by	default

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?autoGroup=true

Message	Grouping

96

Alternatively	you	can	set	the	group	id	via	the	connection	factory.	All	messages	sent	with	producers	created	via	this	connection	factory
will	set	the		JMSXGroupID		to	the	specified	value	on	all	messages	sent.	This	can	also	be	set	in	the	JNDI	context	environment,	e.g.
	jndi.properties	.	Here's	a	simple	example	using	the	"ConnectionFactory"	connection	factory	which	is	available	in	the	context	by
default:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?roupID=Group-0

Example

See	the	[examples](examples.md}	chapter	for	an	example	which	shows	how	message	groups	are	configured	and	used	with	JMS	and	via	a
connection	factory.

Clustered	Grouping

Using	message	groups	in	a	cluster	is	a	bit	more	complex.	This	is	because	messages	with	a	particular	group	id	can	arrive	on	any	node	so
each	node	needs	to	know	about	which	group	id's	are	bound	to	which	consumer	on	which	node.	The	consumer	handling	messages	for	a
particular	group	id	may	be	on	a	different	node	of	the	cluster,	so	each	node	needs	to	know	this	information	so	it	can	route	the	message
correctly	to	the	node	which	has	that	consumer.

To	solve	this	there	is	the	notion	of	a	grouping	handler.	Each	node	will	have	its	own	grouping	handler	and	when	a	messages	is	sent	with	a
group	id	assigned,	the	handlers	will	decide	between	them	which	route	the	message	should	take.

There	are	2	types	of	handlers;	Local	and	Remote.	Each	cluster	should	choose	1	node	to	have	a	local	grouping	handler	and	all	the	other
nodes	should	have	remote	handlers-	it's	the	local	handler	that	actually	makes	the	decision	as	to	what	route	should	be	used,	all	the	other
remote	handlers	converse	with	this.	Here	is	a	sample	config	for	both	types	of	handler,	this	should	be	configured	in	the	broker.xml	file.

<grouping-handler	name="my-grouping-handler">

			<type>LOCAL</type>

			<address>jms</address>

			<timeout>5000</timeout>

</grouping-handler>

<grouping-handler	name="my-grouping-handler">

			<type>REMOTE</type>

			<address>jms</address>

			<timeout>5000</timeout>

</grouping-handler>

The	address	attribute	refers	to	a	cluster	connection	and	the	address	it	uses,	refer	to	the	clustering	section	on	how	to	configure	clusters.
The	timeout	attribute	referees	to	how	long	to	wait	for	a	decision	to	be	made,	an	exception	will	be	thrown	during	the	send	if	this	timeout
is	reached,	this	ensures	that	strict	ordering	is	kept.

The	decision	as	to	where	a	message	should	be	routed	to	is	initially	proposed	by	the	node	that	receives	the	message.	The	node	will	pick	a
suitable	route	as	per	the	normal	clustered	routing	conditions,	i.e.	round	robin	available	queues,	use	a	local	queue	first	and	choose	a	queue
that	has	a	consumer.	If	the	proposal	is	accepted	by	the	grouping	handlers	the	node	will	route	messages	to	this	queue	from	that	point	on,
if	rejected	an	alternative	route	will	be	offered	and	the	node	will	again	route	to	that	queue	indefinitely.	All	other	nodes	will	also	route	to
the	queue	chosen	at	proposal	time.	Once	the	message	arrives	at	the	queue	then	normal	single	server	message	group	semantics	take	over
and	the	message	is	pinned	to	a	consumer	on	that	queue.

You	may	have	noticed	that	there	is	a	single	point	of	failure	with	the	single	local	handler.	If	this	node	crashes	then	no	decisions	will	be
able	to	be	made.	Any	messages	sent	will	be	not	be	delivered	and	an	exception	thrown.	To	avoid	this	happening	Local	Handlers	can	be
replicated	on	another	backup	node.	Simple	create	your	back	up	node	and	configure	it	with	the	same	Local	handler.

Clustered	Grouping	Best	Practices

Message	Grouping

97

Some	best	practices	should	be	followed	when	using	clustered	grouping:

1.	 Make	sure	your	consumers	are	distributed	evenly	across	the	different	nodes	if	possible.	This	is	only	an	issue	if	you	are	creating	and
closing	consumers	regularly.	Since	messages	are	always	routed	to	the	same	queue	once	pinned,	removing	a	consumer	from	this
queue	may	leave	it	with	no	consumers	meaning	the	queue	will	just	keep	receiving	the	messages.	Avoid	closing	consumers	or	make
sure	that	you	always	have	plenty	of	consumers,	i.e.,	if	you	have	3	nodes	have	3	consumers.

2.	 Use	durable	queues	if	possible.	If	queues	are	removed	once	a	group	is	bound	to	it,	then	it	is	possible	that	other	nodes	may	still	try
to	route	messages	to	it.	This	can	be	avoided	by	making	sure	that	the	queue	is	deleted	by	the	session	that	is	sending	the	messages.
This	means	that	when	the	next	message	is	sent	it	is	sent	to	the	node	where	the	queue	was	deleted	meaning	a	new	proposal	can
successfully	take	place.	Alternatively	you	could	just	start	using	a	different	group	id.

3.	 Always	make	sure	that	the	node	that	has	the	Local	Grouping	Handler	is	replicated.	These	means	that	on	failover	grouping	will	still
occur.

4.	 In	case	you	are	using	group-timeouts,	the	remote	node	should	have	a	smaller	group-timeout	with	at	least	half	of	the	value	on	the
main	coordinator.	This	is	because	this	will	determine	how	often	the	last-time-use	value	should	be	updated	with	a	round	trip	for	a
request	to	the	group	between	the	nodes.

Clustered	Grouping	Example
See	the	examples	chapter	for	an	example	of	how	to	configure	message	groups	with	a	ActiveMQ	Artemis	Cluster.

Message	Grouping

98

Extra	Acknowledge	Modes
JMS	specifies	3	acknowledgement	modes:

	AUTO_ACKNOWLEDGE	

	CLIENT_ACKNOWLEDGE	

	DUPS_OK_ACKNOWLEDGE	

Apache	ActiveMQ	Artemis	supports	two	additional	modes:		PRE_ACKNOWLEDGE		and		INDIVIDUAL_ACKNOWLEDGE	

In	some	cases	you	can	afford	to	lose	messages	in	event	of	failure,	so	it	would	make	sense	to	acknowledge	the	message	on	the	server
before	delivering	it	to	the	client.

This	extra	mode	is	supported	by	Apache	ActiveMQ	Artemis	and	will	call	it	pre-acknowledge	mode.

The	disadvantage	of	acknowledging	on	the	server	before	delivery	is	that	the	message	will	be	lost	if	the	system	crashes	after
acknowledging	the	message	on	the	server	but	before	it	is	delivered	to	the	client.	In	that	case,	the	message	is	lost	and	will	not	be	recovered
when	the	system	restart.

Depending	on	your	messaging	case,		preAcknowledgement		mode	can	avoid	extra	network	traffic	and	CPU	at	the	cost	of	coping	with
message	loss.

An	example	of	a	use	case	for	pre-acknowledgement	is	for	stock	price	update	messages.	With	these	messages	it	might	be	reasonable	to
lose	a	message	in	event	of	crash,	since	the	next	price	update	message	will	arrive	soon,	overriding	the	previous	price.

Note

Please	note,	that	if	you	use	pre-acknowledge	mode,	then	you	will	lose	transactional	semantics	for	messages	being	consumed,
since	clearly	they	are	being	acknowledged	first	on	the	server,	not	when	you	commit	the	transaction.	This	may	be	stating	the
obvious	but	we	like	to	be	clear	on	these	things	to	avoid	confusion!

Using	PRE_ACKNOWLEDGE

This	can	be	configured	in	a	client's	JNDI	context	environment,	e.g.		jndi.properties	,	like	this:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connection.ConnectionFactory=tcp://localhost:61616?preAcknowledge=true

Alternatively,	to	use	pre-acknowledgement	mode	using	the	JMS	API,	create	a	JMS	Session	with	the		ActiveMQSession.PRE_ACKNOWLEDGE	
constant.

//	messages	will	be	acknowledge	on	the	server	*before*	being	delivered	to	the	client

Session	session	=	connection.createSession(false,	ActiveMQJMSConstants.PRE_ACKNOWLEDGE);

Or	you	can	set	pre-acknowledge	directly	on	the		ActiveMQConnectionFactory		instance	using	the	setter	method.

To	use	pre-acknowledgement	mode	using	the	core	API	you	can	set	it	directly	on	the		ClientSessionFactory		instance	using	the	setter
method.

Individual	Acknowledge

A	valid	use-case	for	individual	acknowledgement	would	be	when	you	need	to	have	your	own	scheduling	and	you	don't	know	when	your
message	processing	will	be	finished.	You	should	prefer	having	one	consumer	per	thread	worker	but	this	is	not	possible	in	some
circumstances	depending	on	how	complex	is	your	processing.	For	that	you	can	use	the	individual	Acknowledgement.

Extra	Acknowledge	Modes

99

You	basically	setup	Individual	ACK	by	creating	a	session	with	the	acknowledge	mode	with
	ActiveMQJMSConstants.INDIVIDUAL_ACKNOWLEDGE	.	Individual	ACK	inherits	all	the	semantics	from	Client	Acknowledge,	with	the	exception
the	message	is	individually	acked.

Note

Please	note,	that	to	avoid	confusion	on	MDB	processing,	Individual	ACKNOWLEDGE	is	not	supported	through	MDBs	(or	the
inbound	resource	adapter).	this	is	because	you	have	to	finish	the	process	of	your	message	inside	the	MDB.

Example
See	the	examples	chapter	for	an	example	which	shows	how	to	use	pre-acknowledgement	mode	with	JMS.

Extra	Acknowledge	Modes

100

Management
Apache	ActiveMQ	Artemis	has	an	extensive	management	API	that	allows	a	user	to	modify	a	server	configuration,	create	new	resources
(e.g.	JMS	queues	and	topics),	inspect	these	resources	(e.g.	how	many	messages	are	currently	held	in	a	queue)	and	interact	with	it	(e.g.	to
remove	messages	from	a	queue).	All	the	operations	allows	a	client	to	manage	Apache	ActiveMQ	Artemis.	It	also	allows	clients	to
subscribe	to	management	notifications.

There	are	3	ways	to	manage	Apache	ActiveMQ	Artemis:

Using	JMX	--	JMX	is	the	standard	way	to	manage	Java	applications

Using	the	core	API	--	management	operations	are	sent	to	Apache	ActiveMQ	Artemis	server	using	core	messages

Using	the	JMS	API	--	management	operations	are	sent	to	Apache	ActiveMQ	Artemis	server	using	JMS	messages

Although	there	are	3	different	ways	to	manage	Apache	ActiveMQ	Artemis	each	API	supports	the	same	functionality.	If	it	is	possible	to
manage	a	resource	using	JMX	it	is	also	possible	to	achieve	the	same	result	using	Core	messages	or	JMS	messages.

This	choice	depends	on	your	requirements,	your	application	settings	and	your	environment	to	decide	which	way	suits	you	best.

Object	name	changes	between	versions	1.1	and	2

In	version	1.2	of	Artemis	new	properties	were	added	to	distinguish	object	names	when	multiple	brokers	were	deploiyed	in	the	same
JVM	and	to	be	more	like	ActiveMQ	5.	so	for	the	server	the	name	changed	from		org.apache.activemq.artemis:module=Core,type=Server	
to		org.apache.activemq.artemis:type=Broker,brokerName=<broker	name>,module=Core,ServerType=Server	.	you	can	configure	the	old	style
by	setting		<jmx-use-broker-name>false</jmx-use-broker-name>	.	Note	that	if	you	do	not	set	a	broker	name	then	this	will	default	to
localhost.

The	Management	API

Regardless	of	the	way	you	invoke	management	operations,	the	management	API	is	the	same.

For	each	managed	resource,	there	exists	a	Java	interface	describing	what	can	be	invoked	for	this	type	of	resource.

Apache	ActiveMQ	Artemis	exposes	its	managed	resources	in	2	packages:

Core	resources	are	located	in	the		org.apache.activemq.artemis.api.core.management		package

JMS	resources	are	located	in	the		org.apache.activemq.artemis.api.jms.management		package

The	way	to	invoke	a	management	operations	depends	whether	JMX,	core	messages,	or	JMS	messages	are	used.

Note

A	few	management	operations	requires	a		filter		parameter	to	chose	which	messages	are	involved	by	the	operation.	Passing
	null		or	an	empty	string	means	that	the	management	operation	will	be	performed	on	all	messages.

Core	Management	API

Apache	ActiveMQ	Artemis	defines	a	core	management	API	to	manage	core	resources.	For	full	details	of	the	API	please	consult	the
javadoc.	In	summary:

Core	Server	Management

Listing,	creating,	deploying	and	destroying	queues

A	list	of	deployed	core	queues	can	be	retrieved	using	the		getQueueNames()		method.

Management

101

Core	queues	can	be	created	or	destroyed	using	the	management	operations		createQueue()		or		deployQueue()		or
	destroyQueue())on	the		ActiveMQServerControl		(with	the	ObjectName		org.apache.activemq.artemis:type=Broker,brokerName=
<broker	name>,module=Core,serviceType=Server		or	the	resource	name		core.server)

	createQueue		will	fail	if	the	queue	already	exists	while		deployQueue		will	do	nothing.

Pausing	and	resuming	Queues

The		QueueControl		can	pause	and	resume	the	underlying	queue.	When	a	queue	is	paused,	it	will	receive	messages	but	will	not
deliver	them.	When	it's	resumed,	it'll	begin	delivering	the	queued	messages,	if	any.

Listing	and	closing	remote	connections

Client's	remote	addresses	can	be	retrieved	using		listRemoteAddresses()	.	It	is	also	possible	to	close	the	connections	associated	with
a	remote	address	using	the		closeConnectionsForAddress()		method.

Alternatively,	connection	IDs	can	be	listed	using		listConnectionIDs()		and	all	the	sessions	for	a	given	connection	ID	can	be	listed
using		listSessions()	.

Transaction	heuristic	operations

In	case	of	a	server	crash,	when	the	server	restarts,	it	it	possible	that	some	transaction	requires	manual	intervention.	The
	listPreparedTransactions()		method	lists	the	transactions	which	are	in	the	prepared	states	(the	transactions	are	represented	as
opaque	Base64	Strings.)	To	commit	or	rollback	a	given	prepared	transaction,	the		commitPreparedTransaction()		or
	rollbackPreparedTransaction()		method	can	be	used	to	resolve	heuristic	transactions.	Heuristically	completed	transactions	can	be
listed	using	the		listHeuristicCommittedTransactions()		and		listHeuristicRolledBackTransactions		methods.

Enabling	and	resetting	Message	counters

Message	counters	can	be	enabled	or	disabled	using	the		enableMessageCounters()		or		disableMessageCounters()		method.	To	reset
message	counters,	it	is	possible	to	invoke		resetAllMessageCounters()		and		resetAllMessageCounterHistories()		methods.

Retrieving	the	server	configuration	and	attributes

The		ActiveMQServerControl		exposes	Apache	ActiveMQ	Artemis	server	configuration	through	all	its	attributes	(e.g.		getVersion()	
method	to	retrieve	the	server's	version,	etc.)

Listing,	creating	and	destroying	Core	bridges	and	diverts

A	list	of	deployed	core	bridges	(resp.	diverts)	can	be	retrieved	using	the		getBridgeNames()		(resp.		getDivertNames())	method.

Core	bridges	(resp.	diverts)	can	be	created	or	destroyed	using	the	management	operations		createBridge()		and		destroyBridge()	
(resp.		createDivert()		and		destroyDivert())	on	the		ActiveMQServerControl		(with	the	ObjectName
	org.apache.activemq.artemis:module=Core,type=Server		or	the	resource	name		core.server).

It	is	possible	to	stop	the	server	and	force	failover	to	occur	with	any	currently	attached	clients.

to	do	this	use	the		forceFailover()		on	the		ActiveMQServerControl		(with	the	ObjectName
	org.apache.activemq.artemis:type=Broker,brokerName=<broker	name>,module=Core,serviceType=Server		or	the	resource	name
	core.server)

Note

Since	this	method	actually	stops	the	server	you	will	probably	receive	some	sort	of	error	depending	on	which	management
service	you	use	to	call	it.

Core	Address	Management

Core	addresses	can	be	managed	using	the		AddressControl		class	(with	the	ObjectName
	org.apache.activemq.artemis:type=Broker,brokerName=<broker	name>,module=Core,serviceType=Address,name="<the	address	name>"		or	the
resource	name		core.address.<the	address	name>).

Modifying	roles	and	permissions	for	an	address

Management

102

You	can	add	or	remove	roles	associated	to	a	queue	using	the		addRole()		or		removeRole()		methods.	You	can	list	all	the	roles
associated	to	the	queue	with	the		getRoles()		method

Core	Queue	Management

The	bulk	of	the	core	management	API	deals	with	core	queues.	The		QueueControl		class	defines	the	Core	queue	management	operations
(with	the	ObjectName		org.apache.activemq.artemis:type=Broker,brokerName=<broker	name>,module=Core,serviceType=Queue,address="<the
bound	address>",name="<the	queue	name>"		or	the	resource	name		core.queue.<the	queue	name>).

Most	of	the	management	operations	on	queues	take	either	a	single	message	ID	(e.g.	to	remove	a	single	message)	or	a	filter	(e.g.	to	expire
all	messages	with	a	given	property.)

Expiring,	sending	to	a	dead	letter	address	and	moving	messages

Messages	can	be	expired	from	a	queue	by	using	the		expireMessages()		method.	If	an	expiry	address	is	defined,	messages	will	be
sent	to	it,	otherwise	they	are	discarded.	The	queue's	expiry	address	can	be	set	with	the		setExpiryAddress()		method.

Messages	can	also	be	sent	to	a	dead	letter	address	with	the		sendMessagesToDeadLetterAddress()		method.	It	returns	the	number	of
messages	which	are	sent	to	the	dead	letter	address.	If	a	dead	letter	address	is	not	defined,	message	are	removed	from	the	queue	and
discarded.	The	queue's	dead	letter	address	can	be	set	with	the		setDeadLetterAddress()		method.

Messages	can	also	be	moved	from	a	queue	to	another	queue	by	using	the		moveMessages()		method.

Listing	and	removing	messages

Messages	can	be	listed	from	a	queue	by	using	the		listMessages()		method	which	returns	an	array	of		Map	,	one		Map		for	each
message.

Messages	can	also	be	removed	from	the	queue	by	using	the		removeMessages()		method	which	returns	a		boolean		for	the	single
message	ID	variant	or	the	number	of	removed	messages	for	the	filter	variant.	The		removeMessages()		method	takes	a		filter	
argument	to	remove	only	filtered	messages.	Setting	the	filter	to	an	empty	string	will	in	effect	remove	all	messages.

Counting	messages

The	number	of	messages	in	a	queue	is	returned	by	the		getMessageCount()		method.	Alternatively,	the		countMessages()		will	return
the	number	of	messages	in	the	queue	which	match	a	given	filter

Changing	message	priority

The	message	priority	can	be	changed	by	using	the		changeMessagesPriority()		method	which	returns	a		boolean		for	the	single
message	ID	variant	or	the	number	of	updated	messages	for	the	filter	variant.

Message	counters

Message	counters	can	be	listed	for	a	queue	with	the		listMessageCounter()		and		listMessageCounterHistory()		methods	(see
Message	Counters	section).	The	message	counters	can	also	be	reset	for	a	single	queue	using	the		resetMessageCounter()		method.

Retrieving	the	queue	attributes

The		QueueControl		exposes	Core	queue	settings	through	its	attributes	(e.g.		getFilter()		to	retrieve	the	queue's	filter	if	it	was
created	with	one,		isDurable()		to	know	whether	the	queue	is	durable	or	not,	etc.)

Pausing	and	resuming	Queues

The		QueueControl		can	pause	and	resume	the	underlying	queue.	When	a	queue	is	paused,	it	will	receive	messages	but	will	not
deliver	them.	When	it's	resume,	it'll	begin	delivering	the	queued	messages,	if	any.

Other	Core	Resources	Management

Apache	ActiveMQ	Artemis	allows	to	start	and	stop	its	remote	resources	(acceptors,	diverts,	bridges,	etc.)	so	that	a	server	can	be	taken
off	line	for	a	given	period	of	time	without	stopping	it	completely	(e.g.	if	other	management	operations	must	be	performed	such	as
resolving	heuristic	transactions).	These	resources	are:

Management

103

Acceptors

They	can	be	started	or	stopped	using	the		start()		or.		stop()		method	on	the		AcceptorControl		class	(with	the	ObjectName
	org.apache.activemq.artemis:type=Broker,brokerName=<broker	name>,module=Core,serviceType=Acceptor,name="<the	acceptor	name>"	

or	the	resource	name		core.acceptor.<the	address	name>).	The	acceptors	parameters	can	be	retrieved	using	the		AcceptorControl	
attributes	(see	Understanding	Acceptors)

Diverts

They	can	be	started	or	stopped	using	the		start()		or		stop()		method	on	the		DivertControl		class	(with	the	ObjectName
	org.apache.activemq.artemis:type=Broker,brokerName=<broker	name>,module=Core,serviceType=Divert,name=<the	divert	name>		or	the
resource	name		core.divert.<the	divert	name>).	Diverts	parameters	can	be	retrieved	using	the		DivertControl		attributes	(see
Diverting	and	Splitting	Message	Flows))

Bridges

They	can	be	started	or	stopped	using	the		start()		(resp.		stop())	method	on	the		BridgeControl		class	(with	the	ObjectName
	org.apache.activemq.artemis:type=Broker,brokerName=<broker	name>,module=Core,serviceType=Bridge,name="<the	bridge	name>"		or
the	resource	name		core.bridge.<the	bridge	name>).	Bridges	parameters	can	be	retrieved	using	the		BridgeControl		attributes	(see
Core	bridges)

Broadcast	groups

They	can	be	started	or	stopped	using	the		start()		or		stop()		method	on	the		BroadcastGroupControl		class	(with	the	ObjectName
	org.apache.activemq.artemis:type=Broker,brokerName=<broker	name>,module=Core,serviceType=BroadcastGroup,name="<the	broadcast

group	name>"		or	the	resource	name		core.broadcastgroup.<the	broadcast	group	name>).	Broadcast	groups	parameters	can	be
retrieved	using	the		BroadcastGroupControl		attributes	(see	Clusters)

Discovery	groups

They	can	be	started	or	stopped	using	the		start()		or		stop()		method	on	the		DiscoveryGroupControl		class	(with	the	ObjectName
	org.apache.activemq.artemis:type=Broker,brokerName=<broker	name>,module=Core,serviceType=DiscoveryGroup,name="<the	discovery

group	name>"		or	the	resource	name		core.discovery.<the	discovery	group	name>).	Discovery	groups	parameters	can	be	retrieved
using	the		DiscoveryGroupControl		attributes	(see	Clusters)

Cluster	connections

They	can	be	started	or	stopped	using	the		start()		or		stop()		method	on	the		ClusterConnectionControl		class	(with	the
ObjectName		org.apache.activemq.artemis:type=Broker,brokerName=<broker
name>,module=Core,serviceType=ClusterConnection,name="<the	cluster	connection	name>"		or	the	resource	name
	core.clusterconnection.<the	cluster	connection	name>).	Cluster	connections	parameters	can	be	retrieved	using	the
	ClusterConnectionControl		attributes	(see	Clusters)

JMS	Management	API

Apache	ActiveMQ	Artemis	defines	a	JMS	Management	API	to	manage	JMS	administrated	objects	(i.e.	JMS	queues,	topics	and
connection	factories).

JMS	Server	Management

JMS	Resources	(connection	factories	and	destinations)	can	be	created	using	the		JMSServerControl		class	(with	the	ObjectName
	org.apache.activemq.artemis:type=Broker,brokerName=<broker	name>,module=JMS,serviceType=Server		or	the	resource	name		jms.server).

Listing,	creating,	destroying	connection	factories

Names	of	the	deployed	connection	factories	can	be	retrieved	by	the		getConnectionFactoryNames()		method.

JMS	connection	factories	can	be	created	or	destroyed	using	the		createConnectionFactory()		methods	or
	destroyConnectionFactory()		methods.	These	connection	factories	are	bound	to	JNDI	so	that	JMS	clients	can	look	them	up.	If	a
graphical	console	is	used	to	create	the	connection	factories,	the	transport	parameters	are	specified	in	the	text	field	input	as	a
comma-separated	list	of	key=value	(e.g.		key1=10,	key2="value",	key3=false).	If	there	are	multiple	transports	defined,	you	need	to

Management

104

enclose	the	key/value	pairs	between	curly	braces.	For	example		{key=10},	{key=20}	.	In	that	case,	the	first		key		will	be	associated
to	the	first	transport	configuration	and	the	second		key		will	be	associated	to	the	second	transport	configuration	(see	Configuring

Transports	for	a	list	of	the	transport	parameters)

Listing,	creating,	destroying	queues

Names	of	the	deployed	JMS	queues	can	be	retrieved	by	the		getQueueNames()		method.

JMS	queues	can	be	created	or	destroyed	using	the		createQueue()		methods	or		destroyQueue()		methods.	These	queues	are	bound
to	JNDI	so	that	JMS	clients	can	look	them	up

Listing,	creating/destroying	topics

Names	of	the	deployed	topics	can	be	retrieved	by	the		getTopicNames()		method.

JMS	topics	can	be	created	or	destroyed	using	the		createTopic()		or		destroyTopic()		methods.	These	topics	are	bound	to	JNDI	so
that	JMS	clients	can	look	them	up

Listing	and	closing	remote	connections

JMS	Clients	remote	addresses	can	be	retrieved	using		listRemoteAddresses()	.	It	is	also	possible	to	close	the	connections	associated
with	a	remote	address	using	the		closeConnectionsForAddress()		method.

Alternatively,	connection	IDs	can	be	listed	using		listConnectionIDs()		and	all	the	sessions	for	a	given	connection	ID	can	be	listed
using		listSessions()	.

JMS	ConnectionFactory	Management

JMS	Connection	Factories	can	be	managed	using	the		ConnectionFactoryControl		class	(with	the	ObjectName
	org.apache.activemq.artemis:type=Broker,brokerName=<broker	name>,module=JMS,serviceType=ConnectionFactory,name="<the	connection

factory	name>"		or	the	resource	name		jms.connectionfactory.<the	connection	factory	name>).

Retrieving	connection	factory	attributes

The		ConnectionFactoryControl		exposes	JMS	ConnectionFactory	configuration	through	its	attributes	(e.g.
	getConsumerWindowSize()		to	retrieve	the	consumer	window	size	for	flow	control,		isBlockOnNonDurableSend()		to	know	whether	the
producers	created	from	the	connection	factory	will	block	or	not	when	sending	non-durable	messages,	etc.)

JMS	Queue	Management

JMS	queues	can	be	managed	using	the		JMSQueueControl		class	(with	the	ObjectName
	org.apache.activemq.artemis:type=Broker,brokerName=<broker	name>,module=JMS,serviceType=Queue,name="<the	queue	name>"		or	the
resource	name		jms.queue.<the	queue	name>).

The	management	operations	on	a	JMS	queue	are	very	similar	to	the	operations	on	a	core	queue.

Expiring,	sending	to	a	dead	letter	address	and	moving	messages

Messages	can	be	expired	from	a	queue	by	using	the		expireMessages()		method.	If	an	expiry	address	is	defined,	messages	will	be
sent	to	it,	otherwise	they	are	discarded.	The	queue's	expiry	address	can	be	set	with	the		setExpiryAddress()		method.

Messages	can	also	be	sent	to	a	dead	letter	address	with	the		sendMessagesToDeadLetterAddress()		method.	It	returns	the	number	of
messages	which	are	sent	to	the	dead	letter	address.	If	a	dead	letter	address	is	not	defined,	message	are	removed	from	the	queue	and
discarded.	The	queue's	dead	letter	address	can	be	set	with	the		setDeadLetterAddress()		method.

Messages	can	also	be	moved	from	a	queue	to	another	queue	by	using	the		moveMessages()		method.

Listing	and	removing	messages

Messages	can	be	listed	from	a	queue	by	using	the		listMessages()		method	which	returns	an	array	of		Map	,	one		Map		for	each
message.

Management

105

Messages	can	also	be	removed	from	the	queue	by	using	the		removeMessages()		method	which	returns	a		boolean		for	the	single
message	ID	variant	or	the	number	of	removed	messages	for	the	filter	variant.	The		removeMessages()		method	takes	a		filter	
argument	to	remove	only	filtered	messages.	Setting	the	filter	to	an	empty	string	will	in	effect	remove	all	messages.

Counting	messages

The	number	of	messages	in	a	queue	is	returned	by	the		getMessageCount()		method.	Alternatively,	the		countMessages()		will	return
the	number	of	messages	in	the	queue	which	match	a	given	filter

Changing	message	priority

The	message	priority	can	be	changed	by	using	the		changeMessagesPriority()		method	which	returns	a		boolean		for	the	single
message	ID	variant	or	the	number	of	updated	messages	for	the	filter	variant.

Message	counters

Message	counters	can	be	listed	for	a	queue	with	the		listMessageCounter()		and		listMessageCounterHistory()		methods	(see
Message	Counters	section)

Retrieving	the	queue	attributes

The		JMSQueueControl		exposes	JMS	queue	settings	through	its	attributes	(e.g.		isTemporary()		to	know	whether	the	queue	is
temporary	or	not,		isDurable()		to	know	whether	the	queue	is	durable	or	not,	etc.)

Pausing	and	resuming	queues

The		JMSQueueControl		can	pause	and	resume	the	underlying	queue.	When	the	queue	is	paused	it	will	continue	to	receive	messages
but	will	not	deliver	them.	When	resumed	again	it	will	deliver	the	enqueued	messages,	if	any.

JMS	Topic	Management

JMS	Topics	can	be	managed	using	the		TopicControl		class	(with	the	ObjectName		org.apache.activemq.artemis:type=Broker,brokerName=
<broker	name>,module=JMS,serviceType=Topic,name="<the	topic	name>"		or	the	resource	name		jms.topic.<the	topic	name>).

Listing	subscriptions	and	messages

JMS	topics	subscriptions	can	be	listed	using	the		listAllSubscriptions()	,		listDurableSubscriptions()	,
	listNonDurableSubscriptions()		methods.	These	methods	return	arrays	of		Object		representing	the	subscriptions	information
(subscription	name,	client	ID,	durability,	message	count,	etc.).	It	is	also	possible	to	list	the	JMS	messages	for	a	given	subscription
with	the		listMessagesForSubscription()		method.

Dropping	subscriptions

Durable	subscriptions	can	be	dropped	from	the	topic	using	the		dropDurableSubscription()		method.

Counting	subscriptions	messages

The		countMessagesForSubscription()		method	can	be	used	to	know	the	number	of	messages	held	for	a	given	subscription	(with	an
optional	message	selector	to	know	the	number	of	messages	matching	the	selector)

Using	Management	Via	JMX
Apache	ActiveMQ	Artemis	can	be	managed	using	JMX.

The	management	API	is	exposed	by	Apache	ActiveMQ	Artemis	using	MBeans	interfaces.	Apache	ActiveMQ	Artemis	registers	its
resources	with	the	domain		org.apache.activemq	.

For	example,	the		ObjectName		to	manage	a	JMS	Queue		exampleQueue		is:

org.apache.activemq.artemis:type=Broker,brokerName=<broker	name>,module=JMS,serviceType=Queue,name="exampleQueue"

Management

106

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

and	the	MBean	is:

org.apache.activemq.artemis.api.jms.management.JMSQueueControl

The	MBean's		ObjectName		are	built	using	the	helper	class		org.apache.activemq.artemis.api.core.management.ObjectNameBuilder	.	You
can	also	use		jconsole		to	find	the		ObjectName		of	the	MBeans	you	want	to	manage.

Managing	Apache	ActiveMQ	Artemis	using	JMX	is	identical	to	management	of	any	Java	Applications	using	JMX.	It	can	be	done	by
reflection	or	by	creating	proxies	of	the	MBeans.

Configuring	JMX

By	default,	JMX	is	enabled	to	manage	Apache	ActiveMQ	Artemis.	It	can	be	disabled	by	setting		jmx-management-enabled		to		false		in
	broker.xml	:

<!--	false	to	disable	JMX	management	for	Apache	ActiveMQ	Artemis	-->

<jmx-management-enabled>false</jmx-management-enabled>

If	JMX	is	enabled,	Apache	ActiveMQ	Artemis	can	be	managed	locally	using		jconsole	.

Note

Remote	connections	to	JMX	are	not	enabled	by	default	for	security	reasons.	Please	refer	to	Java	Management	guide	to	configure
the	server	for	remote	management	(system	properties	must	be	set	in		run.sh		or		run.bat		scripts).

By	default,	Apache	ActiveMQ	Artemis	server	uses	the	JMX	domain	"org.apache.activemq.artemis".	To	manage	several	Apache
ActiveMQ	Artemis	servers	from	the	same	MBeanServer,	the	JMX	domain	can	be	configured	for	each	individual	Apache	ActiveMQ
Artemis	server	by	setting		jmx-domain		in		broker.xml	:

<!--	use	a	specific	JMX	domain	for	ActiveMQ	Artemis	MBeans	-->

<jmx-domain>my.org.apache.activemq</jmx-domain>

MBeanServer	configuration

When	Apache	ActiveMQ	Artemis	is	run	in	standalone,	it	uses	the	Java	Virtual	Machine's		Platform	MBeanServer		to	register	its	MBeans.
By	default	Jolokia	is	also	deployed	to	allow	access	to	the	mbean	server	via	rest.

Example

See	the	chapters	chapter	for	an	example	which	shows	how	to	use	a	remote	connection	to	JMX	and	MBean	proxies	to	manage	Apache
ActiveMQ	Artemis.

Exposing	JMX	using	Jolokia

The	default	Broker	configuration	ships	with	the	Jolokia	http	agent	deployed	as	a	Web	Application.	Jolokia	is	a	remote	JMX	over	HTTP
bridge	that	exposed	mBeans,	for	a	full	guids	as	to	how	to	use	refer	to	Jolokia	Documentation,	however	a	simple	example	to	query
thebrokers	version	would	be	to	use	a	brower	and	go	to	the	URL
http://localhost:8161/jolokia/read/org.apache.activemq.artemis:module=Core,type=Server/Version.

This	would	give	you	back	something	like	the	following:

{"timestamp":1422019706,"status":200,"request":{"mbean":"org.apache.activemq.artemis:type=Broker,brokerName=<broker	name>,modu

le=Core,serviceType=Server","attribute":"Version","type":"read"},"value":"1.0.0.SNAPSHOT	(Active	Hornet,	126)"}

Using	Management	Via	Core	API

Management

107

http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html
http://www.jolokia.org/
http://www.jolokia.org
http://www.jolokia.org/documentation.html
http://localhost:8161/jolokia/read/org.apache.activemq.artemis:module=Core,type=Server/Version

The	core	management	API	in	ActiveMQ	Artemis	is	called	by	sending	Core	messages	to	a	special	address,	the	management	address.

Management	messages	are	regular	Core	messages	with	well-known	properties	that	the	server	needs	to	understand	to	interact	with	the
management	API:

The	name	of	the	managed	resource

The	name	of	the	management	operation

The	parameters	of	the	management	operation

When	such	a	management	message	is	sent	to	the	management	address,	Apache	ActiveMQ	Artemis	server	will	handle	it,	extract	the
information,	invoke	the	operation	on	the	managed	resources	and	send	a	management	reply	to	the	management	message's	reply-to	address
(specified	by		ClientMessageImpl.REPLYTO_HEADER_NAME).

A		ClientConsumer		can	be	used	to	consume	the	management	reply	and	retrieve	the	result	of	the	operation	(if	any)	stored	in	the	reply's
body.	For	portability,	results	are	returned	as	a	JSON	String	rather	than	Java	Serialization	(the
	org.apache.activemq.artemis.api.core.management.ManagementHelper		can	be	used	to	convert	the	JSON	string	to	Java	objects).

These	steps	can	be	simplified	to	make	it	easier	to	invoke	management	operations	using	Core	messages:

1.	 Create	a		ClientRequestor		to	send	messages	to	the	management	address	and	receive	replies

2.	 Create	a		ClientMessage	

3.	 Use	the	helper	class		org.apache.activemq.artemis.api.core.management.ManagementHelper		to	fill	the	message	with	the	management
properties

4.	 Send	the	message	using	the		ClientRequestor	

5.	 Use	the	helper	class		org.apache.activemq.artemis.api.core.management.ManagementHelper		to	retrieve	the	operation	result	from	the
management	reply

For	example,	to	find	out	the	number	of	messages	in	the	core	queue		exampleQueue	:

ClientSession	session	=	...

ClientRequestor	requestor	=	new	ClientRequestor(session,	"jms.queue.activemq.management");

ClientMessage	message	=	session.createMessage(false);

ManagementHelper.putAttribute(message,	"core.queue.exampleQueue",	"messageCount");

session.start();

ClientMessage	reply	=	requestor.request(m);

int	count	=	(Integer)	ManagementHelper.getResult(reply);

System.out.println("There	are	"	+	count	+	"	messages	in	exampleQueue");

Management	operation	name	and	parameters	must	conform	to	the	Java	interfaces	defined	in	the		management		packages.

Names	of	the	resources	are	built	using	the	helper	class		org.apache.activemq.artemis.api.core.management.ResourceNames		and	are
straightforward	(core.queue.exampleQueue		for	the	Core	Queue		exampleQueue	,		jms.topic.exampleTopic		for	the	JMS	Topic
	exampleTopic	,	etc.).

Configuring	Core	Management

The	management	address	to	send	management	messages	is	configured	in		broker.xml	:

<management-address>jms.queue.activemq.management</management-address>

By	default,	the	address	is		jms.queue.activemq.management		(it	is	prepended	by	"jms.queue"	so	that	JMS	clients	can	also	send
management	messages).

The	management	address	requires	a	special	user	permission		manage		to	be	able	to	receive	and	handle	management	messages.	This	is	also
configured	in	broker.xml:

Management

108

http://json.org

<!--	users	with	the	admin	role	will	be	allowed	to	manage	-->

<!--	Apache	ActiveMQ	Artemis	using	management	messages								-->

<security-setting	match="jms.queue.activemq.management">

			<permission	type="manage"	roles="admin"	/>

</security-setting>

Using	Management	Via	JMS
Using	JMS	messages	to	manage	ActiveMQ	Artemis	is	very	similar	to	using	core	API.

An	important	difference	is	that	JMS	requires	a	JMS	queue	to	send	the	messages	to	(instead	of	an	address	for	the	core	API).

The	management	queue	is	a	special	queue	and	needs	to	be	instantiated	directly	by	the	client:

Queue	managementQueue	=	ActiveMQJMSClient.createQueue("activemq.management");

All	the	other	steps	are	the	same	than	for	the	Core	API	but	they	use	JMS	API	instead:

1.	 create	a		QueueRequestor		to	send	messages	to	the	management	address	and	receive	replies

2.	 create	a		Message	

3.	 use	the	helper	class		org.apache.activemq.artemis.api.jms.management.JMSManagementHelper		to	fill	the	message	with	the	management
properties

4.	 send	the	message	using	the		QueueRequestor	

5.	 use	the	helper	class		org.apache.activemq.artemis.api.jms.management.JMSManagementHelper		to	retrieve	the	operation	result	from	the
management	reply

For	example,	to	know	the	number	of	messages	in	the	JMS	queue		exampleQueue	:

Queue	managementQueue	=	ActiveMQJMSClient.createQueue("activemq.management");

QueueSession	session	=	...

QueueRequestor	requestor	=	new	QueueRequestor(session,	managementQueue);

connection.start();

Message	message	=	session.createMessage();

JMSManagementHelper.putAttribute(message,	"jms.queue.exampleQueue",	"messageCount");

Message	reply	=	requestor.request(message);

int	count	=	(Integer)JMSManagementHelper.getResult(reply);

System.out.println("There	are	"	+	count	+	"	messages	in	exampleQueue");

Configuring	JMS	Management

Whether	JMS	or	the	core	API	is	used	for	management,	the	configuration	steps	are	the	same	(see	Configuring	Core	Management	section).

Example

See	the	examples	chapter	for	an	example	which	shows	how	to	use	JMS	messages	to	manage	the	Apache	ActiveMQ	Artemis	server.

Management	Notifications
Apache	ActiveMQ	Artemis	emits	notifications	to	inform	listeners	of	potentially	interesting	events	(creation	of	new	resources,	security
violation,	etc.).

These	notifications	can	be	received	by	3	different	ways:

JMX	notifications

Management

109

Core	messages

JMS	messages

JMX	Notifications

If	JMX	is	enabled	(see	Configuring	JMX	section),	JMX	notifications	can	be	received	by	subscribing	to	2	MBeans:

	org.apache.activemq.artemis:type=Broker,brokerName=<broker	name>,module=Core,serviceType=Server		for	notifications	on	Core
resources

	org.apache.activemq.artemis:type=Broker,brokerName=<broker	name>,module=JMS,serviceType=Server		for	notifications	on	JMS
resources

Core	Messages	Notifications

Apache	ActiveMQ	Artemis	defines	a	special	management	notification	address.	Core	queues	can	be	bound	to	this	address	so	that	clients
will	receive	management	notifications	as	Core	messages

A	Core	client	which	wants	to	receive	management	notifications	must	create	a	core	queue	bound	to	the	management	notification	address.
It	can	then	receive	the	notifications	from	its	queue.

Notifications	messages	are	regular	core	messages	with	additional	properties	corresponding	to	the	notification	(its	type,	when	it	occurred,
the	resources	which	were	concerned,	etc.).

Since	notifications	are	regular	core	messages,	it	is	possible	to	use	message	selectors	to	filter	out	notifications	and	receives	only	a	subset
of	all	the	notifications	emitted	by	the	server.

Configuring	The	Core	Management	Notification	Address

The	management	notification	address	to	receive	management	notifications	is	configured	in		broker.xml	:

<management-notification-address>activemq.notifications</management-notification-address>

By	default,	the	address	is		activemq.notifications	.

JMS	Messages	Notifications

Apache	ActiveMQ	Artemis's	notifications	can	also	be	received	using	JMS	messages.

It	is	similar	to	receiving	notifications	using	Core	API	but	an	important	difference	is	that	JMS	requires	a	JMS	Destination	to	receive	the
messages	(preferably	a	Topic).

To	use	a	JMS	Destination	to	receive	management	notifications,	you	must	change	the	server's	management	notification	address	to	start
with		jms.queue		if	it	is	a	JMS	Queue	or		jms.topic		if	it	is	a	JMS	Topic:

<!--	notifications	will	be	consumed	from	"notificationsTopic"	JMS	Topic	-->

<management-notification-address>jms.topic.notificationsTopic</management-notification-address>

Once	the	notification	topic	is	created,	you	can	receive	messages	from	it	or	set	a		MessageListener	:

Topic	notificationsTopic	=	ActiveMQJMSClient.createTopic("notificationsTopic");

Session	session	=	...

MessageConsumer	notificationConsumer	=	session.createConsumer(notificationsTopic);

notificationConsumer.setMessageListener(new	MessageListener()

{

			public	void	onMessage(Message	notif)

			{

						System.out.println("------------------------");

Management

110

						System.out.println("Received	notification:");

						try

						{

									Enumeration	propertyNames	=	notif.getPropertyNames();

									while	(propertyNames.hasMoreElements())

									{

												String	propertyName	=	(String)propertyNames.nextElement();

												System.out.format("		%s:	%s\n",	propertyName,	notif.getObjectProperty(propertyName));

									}

						}

						catch	(JMSException	e)

						{

						}

						System.out.println("------------------------");

			}

});

Example

See	the	examples	chapter	for	an	example	which	shows	how	to	use	a	JMS		MessageListener		to	receive	management	notifications	from
ActiveMQ	Artemis	server.

Notification	Types	and	Headers

Below	is	a	list	of	all	the	different	kinds	of	notifications	as	well	as	which	headers	are	on	the	messages.	Every	notification	has	a
	_AMQ_NotifType		(value	noted	in	parentheses)	and		_AMQ_NotifTimestamp		header.	The	timestamp	is	the	un-formatted	result	of	a	call	to
	java.lang.System.currentTimeMillis()	.

	BINDING_ADDED		(0)

	_AMQ_Binding_Type	,		_AMQ_Address	,		_AMQ_ClusterName	,		_AMQ_RoutingName	,		_AMQ_Binding_ID	,		_AMQ_Distance	,
	_AMQ_FilterString	

	BINDING_REMOVED		(1)

	_AMQ_Address	,		_AMQ_ClusterName	,		_AMQ_RoutingName	,		_AMQ_Binding_ID	,		_AMQ_Distance	,		_AMQ_FilterString	

	CONSUMER_CREATED		(2)

	_AMQ_Address	,		_AMQ_ClusterName	,		_AMQ_RoutingName	,		_AMQ_Distance	,		_AMQ_ConsumerCount	,		_AMQ_User	,		_AMQ_RemoteAddress	,
	_AMQ_SessionName	,		_AMQ_FilterString	

	CONSUMER_CLOSED		(3)

	_AMQ_Address	,		_AMQ_ClusterName	,		_AMQ_RoutingName	,		_AMQ_Distance	,		_AMQ_ConsumerCount	,		_AMQ_User	,		_AMQ_RemoteAddress	,
	_AMQ_SessionName	,		_AMQ_FilterString	

	SECURITY_AUTHENTICATION_VIOLATION		(6)

	_AMQ_User	

	SECURITY_PERMISSION_VIOLATION		(7)

	_AMQ_Address	,		_AMQ_CheckType	,		_AMQ_User	

	DISCOVERY_GROUP_STARTED		(8)

	name	

	DISCOVERY_GROUP_STOPPED		(9)

	name	

	BROADCAST_GROUP_STARTED		(10)

	name	

	BROADCAST_GROUP_STOPPED		(11)

Management

111

	name	

	BRIDGE_STARTED		(12)

	name	

	BRIDGE_STOPPED		(13)

	name	

	CLUSTER_CONNECTION_STARTED		(14)

	name	

	CLUSTER_CONNECTION_STOPPED		(15)

	name	

	ACCEPTOR_STARTED		(16)

	factory	,		id	

	ACCEPTOR_STOPPED		(17)

	factory	,		id	

	PROPOSAL		(18)

	_JBM_ProposalGroupId	,		_JBM_ProposalValue	,		_AMQ_Binding_Type	,		_AMQ_Address	,		_AMQ_Distance	

	PROPOSAL_RESPONSE		(19)

	_JBM_ProposalGroupId	,		_JBM_ProposalValue	,		_JBM_ProposalAltValue	,		_AMQ_Binding_Type	,		_AMQ_Address	,		_AMQ_Distance	

	CONSUMER_SLOW		(21)

	_AMQ_Address	,		_AMQ_ConsumerCount	,		_AMQ_RemoteAddress	,		_AMQ_ConnectionName	,		_AMQ_ConsumerName	,		_AMQ_SessionName	

Message	Counters
Message	counters	can	be	used	to	obtain	information	on	queues	over	time	as	Apache	ActiveMQ	Artemis	keeps	a	history	on	queue
metrics.

They	can	be	used	to	show	trends	on	queues.	For	example,	using	the	management	API,	it	would	be	possible	to	query	the	number	of
messages	in	a	queue	at	regular	interval.	However,	this	would	not	be	enough	to	know	if	the	queue	is	used:	the	number	of	messages	can
remain	constant	because	nobody	is	sending	or	receiving	messages	from	the	queue	or	because	there	are	as	many	messages	sent	to	the
queue	than	messages	consumed	from	it.	The	number	of	messages	in	the	queue	remains	the	same	in	both	cases	but	its	use	is	widely
different.

Message	counters	gives	additional	information	about	the	queues:

	count	

The	total	number	of	messages	added	to	the	queue	since	the	server	was	started

	countDelta	

the	number	of	messages	added	to	the	queue	since	the	last	message	counter	update

	messageCount	

The	current	number	of	messages	in	the	queue

	messageCountDelta	

Management

112

The	overall	number	of	messages	added/removed	from	the	queue	since	the	last	message	counter	update.	For	example,	if
	messageCountDelta		is	equal	to		-10		this	means	that	overall	10	messages	have	been	removed	from	the	queue	(e.g.	2	messages	were
added	and	12	were	removed)

	lastAddTimestamp	

The	timestamp	of	the	last	time	a	message	was	added	to	the	queue

	udpateTimestamp	

The	timestamp	of	the	last	message	counter	update

These	attributes	can	be	used	to	determine	other	meaningful	data	as	well.	For	example,	to	know	specifically	how	many	messages	were
consumed	from	the	queue	since	the	last	update	simply	subtract	the		messageCountDelta		from		countDelta	.

Configuring	Message	Counters

By	default,	message	counters	are	disabled	as	it	might	have	a	small	negative	effect	on	memory.

To	enable	message	counters,	you	can	set	it	to		true		in		broker.xml	:

<message-counter-enabled>true</message-counter-enabled>

Message	counters	keeps	a	history	of	the	queue	metrics	(10	days	by	default)	and	samples	all	the	queues	at	regular	interval	(10	seconds
by	default).	If	message	counters	are	enabled,	these	values	should	be	configured	to	suit	your	messaging	use	case	in		broker.xml	:

<!--	keep	history	for	a	week	-->

<message-counter-max-day-history>7</message-counter-max-day-history>

<!--	sample	the	queues	every	minute	(60000ms)	-->

<message-counter-sample-period>60000</message-counter-sample-period>

Message	counters	can	be	retrieved	using	the	Management	API.	For	example,	to	retrieve	message	counters	on	a	JMS	Queue	using	JMX:

//	retrieve	a	connection	to	Apache	ActiveMQ	Artemis's	MBeanServer

MBeanServerConnection	mbsc	=	...

JMSQueueControlMBean	queueControl	=	(JMSQueueControl)MBeanServerInvocationHandler.newProxyInstance(mbsc,

			on,

			JMSQueueControl.class,

			false);

//	message	counters	are	retrieved	as	a	JSON	String

String	counters	=	queueControl.listMessageCounter();

//	use	the	MessageCounterInfo	helper	class	to	manipulate	message	counters	more	easily

MessageCounterInfo	messageCounter	=	MessageCounterInfo.fromJSON(counters);

System.out.format("%s	message(s)	in	the	queue	(since	last	sample:	%s)\n",

messageCounter.getMessageCount(),

messageCounter.getMessageCountDelta());

Example

See	the	examples	chapter	for	an	example	which	shows	how	to	use	message	counters	to	retrieve	information	on	a	JMS		Queue	.

Management

113

Security
This	chapter	describes	how	security	works	with	Apache	ActiveMQ	Artemis	and	how	you	can	configure	it.	To	disable	security
completely	simply	set	the		security-enabled		property	to	false	in	the		broker.xml		file.

For	performance	reasons	security	is	cached	and	invalidated	every	so	long.	To	change	this	period	set	the	property		security-
invalidation-interval	,	which	is	in	milliseconds.	The	default	is		10000		ms.

To	assist	in	security	auditing	the		populate-validated-user		option	exists.	If	this	is		true		then	the	server	will	add	the	name	of	the
validated	user	to	the	message	using	the	key		_AMQ_VALIDATED_USER	.	For	JMS	and	Stomp	clients	this	is	mapped	to	the	key		JMSXUserID	.
For	users	authenticated	based	on	their	SSL	certificate	this	name	is	the	name	to	which	their	certificate's	DN	maps.	If		security-enabled		is
	false		and		populate-validated-user		is		true		then	the	server	will	simply	use	whatever	user	name	(if	any)	the	client	provides.	This
option	is		false		by	default.

Role	based	security	for	addresses
Apache	ActiveMQ	Artemis	contains	a	flexible	role-based	security	model	for	applying	security	to	queues,	based	on	their	addresses.

As	explained	in	Using	Core,	Apache	ActiveMQ	Artemis	core	consists	mainly	of	sets	of	queues	bound	to	addresses.	A	message	is	sent	to
an	address	and	the	server	looks	up	the	set	of	queues	that	are	bound	to	that	address,	the	server	then	routes	the	message	to	those	set	of
queues.

Apache	ActiveMQ	Artemis	allows	sets	of	permissions	to	be	defined	against	the	queues	based	on	their	address.	An	exact	match	on	the
address	can	be	used	or	a	wildcard	match	can	be	used	using	the	wildcard	characters	'	#	'	and	'	*	'.

Eight	different	permissions	can	be	given	to	the	set	of	queues	which	match	the	address.	Those	permissions	are:

	createDurableQueue	.	This	permission	allows	the	user	to	create	a	durable	queue	under	matching	addresses.

	deleteDurableQueue	.	This	permission	allows	the	user	to	delete	a	durable	queue	under	matching	addresses.

	createNonDurableQueue	.	This	permission	allows	the	user	to	create	a	non-durable	queue	under	matching	addresses.

	deleteNonDurableQueue	.	This	permission	allows	the	user	to	delete	a	non-durable	queue	under	matching	addresses.

	send	.	This	permission	allows	the	user	to	send	a	message	to	matching	addresses.

	consume	.	This	permission	allows	the	user	to	consume	a	message	from	a	queue	bound	to	matching	addresses.

	browse	.	This	permission	allows	the	user	to	browse	a	queue	bound	to	the	matching	address.

	manage	.	This	permission	allows	the	user	to	invoke	management	operations	by	sending	management	messages	to	the	management
address.

For	each	permission,	a	list	of	roles	who	are	granted	that	permission	is	specified.	If	the	user	has	any	of	those	roles,	he/she	will	be	granted
that	permission	for	that	set	of	addresses.

Let's	take	a	simple	example,	here's	a	security	block	from		broker.xml		file:

<security-setting	match="globalqueues.europe.#">

			<permission	type="createDurableQueue"	roles="admin"/>

			<permission	type="deleteDurableQueue"	roles="admin"/>

			<permission	type="createNonDurableQueue"	roles="admin,	guest,	europe-users"/>

			<permission	type="deleteNonDurableQueue"	roles="admin,	guest,	europe-users"/>

			<permission	type="send"	roles="admin,	europe-users"/>

			<permission	type="consume"	roles="admin,	europe-users"/>

</security-setting>

Security

114

The	'	#	'	character	signifies	"any	sequence	of	words".	Words	are	delimited	by	the	'	.	'	character.	For	a	full	description	of	the	wildcard
syntax	please	see	Understanding	the	Wildcard	Syntax.	The	above	security	block	applies	to	any	address	that	starts	with	the	string
"globalqueues.europe.":

Only	users	who	have	the		admin		role	can	create	or	delete	durable	queues	bound	to	an	address	that	starts	with	the	string
"globalqueues.europe."

Any	users	with	the	roles		admin	,		guest	,	or		europe-users		can	create	or	delete	temporary	queues	bound	to	an	address	that	starts	with
the	string	"globalqueues.europe."

Any	users	with	the	roles		admin		or		europe-users		can	send	messages	to	these	addresses	or	consume	messages	from	queues	bound	to	an
address	that	starts	with	the	string	"globalqueues.europe."

The	mapping	between	a	user	and	what	roles	they	have	is	handled	by	the	security	manager.	Apache	ActiveMQ	Artemis	ships	with	a	user
manager	that	reads	user	credentials	from	a	file	on	disk,	and	can	also	plug	into	JAAS	or	JBoss	Application	Server	security.

For	more	information	on	configuring	the	security	manager,	please	see	'Changing	the	Security	Manager'.

There	can	be	zero	or	more		security-setting		elements	in	each	xml	file.	Where	more	than	one	match	applies	to	a	set	of	addresses	the
more	specific	match	takes	precedence.

Let's	look	at	an	example	of	that,	here's	another		security-setting		block:

<security-setting	match="globalqueues.europe.orders.#">

			<permission	type="send"	roles="europe-users"/>

			<permission	type="consume"	roles="europe-users"/>

</security-setting>

In	this		security-setting		block	the	match	'globalqueues.europe.orders.#'	is	more	specific	than	the	previous	match
'globalqueues.europe.#'.	So	any	addresses	which	match	'globalqueues.europe.orders.#'	will	take	their	security	settings	only	from	the	latter
security-setting	block.

Note	that	settings	are	not	inherited	from	the	former	block.	All	the	settings	will	be	taken	from	the	more	specific	matching	block,	so	for
the	address	'globalqueues.europe.orders.plastics'	the	only	permissions	that	exist	are		send		and		consume		for	the	role	europe-users.	The
permissions		createDurableQueue	,		deleteDurableQueue	,		createNonDurableQueue	,		deleteNonDurableQueue		are	not	inherited	from	the
other	security-setting	block.

By	not	inheriting	permissions,	it	allows	you	to	effectively	deny	permissions	in	more	specific	security-setting	blocks	by	simply	not
specifying	them.	Otherwise	it	would	not	be	possible	to	deny	permissions	in	sub-groups	of	addresses.

Security	Setting	Plugin

Aside	from	configuring	sets	of	permissions	via	XML	these	permissions	can	alternatively	be	configured	via	a	plugin	which	implements
	org.apache.activemq.artemis.core.server.SecuritySettingPlugin		e.g.:

<security-settings>

			<security-setting-plugin	class-name="org.apache.activemq.artemis.core.server.impl.LegacyLDAPSecuritySettingPlugin">

						<setting	name="initialContextFactory"	value="com.sun.jndi.ldap.LdapCtxFactory"/>

						<setting	name="connectionURL"	value="ldap://localhost:1024"/>

						<setting	name="connectionUsername"	value="uid=admin,ou=system"/>

						<setting	name="connectionPassword"	value="secret"/>

						<setting	name="connectionProtocol"	value="s"/>

						<setting	name="authentication"	value="simple"/>

			</security-setting-plugin>

</security-settings>

Most	of	this	configuration	is	specific	to	the	plugin	implementation.	However,	there	are	two	configuration	details	that	will	be	specified
for	every	implementation:

Security

115

	class-name	.	This	attribute	of		security-setting-plugin		indicates	the	name	of	the	class	which	implements
	org.apache.activemq.artemis.core.server.SecuritySettingPlugin	.

	setting	.	Each	of	these	elements	represents	a	name/value	pair	that	will	be	passed	to	the	implementation	for	configuration
purposes.

See	the	JavaDoc	on		org.apache.activemq.artemis.core.server.SecuritySettingPlugin		for	further	details	about	the	interface	and	what
each	method	is	expected	to	do.

Available	plugins

LegacyLDAPSecuritySettingPlugin

This	plugin	will	read	the	security	information	that	was	previously	handled	by		LDAPAuthorizationMap		and	the
	cachedLDAPAuthorizationMap		in	Apache	ActiveMQ	5.x	and	turn	it	into	Artemis	security	settings	where	possible.	The	security
implementations	of	ActiveMQ	5.x	and	Artemis	don't	match	perfectly	so	some	translation	must	occur	to	achieve	near	equivalent
functionality.

Here	is	an	example	of	the	plugin's	configuration:

<security-setting-plugin	class-name="org.apache.activemq.artemis.core.server.impl.LegacyLDAPSecuritySettingPlugin">

			<setting	name="initialContextFactory"	value="com.sun.jndi.ldap.LdapCtxFactory"/>

			<setting	name="connectionURL"	value="ldap://localhost:1024"/>

			<setting	name="connectionUsername"	value="uid=admin,ou=system"/>

			<setting	name="connectionPassword"	value="secret"/>

			<setting	name="connectionProtocol"	value="s"/>

			<setting	name="authentication"	value="simple"/>

</security-setting-plugin>

	class-name	.	The	implementation	is		org.apache.activemq.artemis.core.server.impl.LegacyLDAPSecuritySettingPlugin	.

	initialContextFactory	.	The	initial	context	factory	used	to	connect	to	LDAP.	It	must	always	be	set	to
	com.sun.jndi.ldap.LdapCtxFactory		(i.e.	the	default	value).

	connectionURL	.	Specifies	the	location	of	the	directory	server	using	an	ldap	URL,		ldap://Host:Port	.	You	can	optionally	qualify
this	URL,	by	adding	a	forward	slash,		/	,	followed	by	the	DN	of	a	particular	node	in	the	directory	tree.	For	example,
	ldap://ldapserver:10389/ou=system	.	The	default	is		ldap://localhost:1024	.

	connectionUsername	.	The	DN	of	the	user	that	opens	the	connection	to	the	directory	server.	For	example,		uid=admin,ou=system	.
Directory	servers	generally	require	clients	to	present	username/password	credentials	in	order	to	open	a	connection.

	connectionPassword	.	The	password	that	matches	the	DN	from		connectionUsername	.	In	the	directory	server,	in	the	DIT,	the
password	is	normally	stored	as	a		userPassword		attribute	in	the	corresponding	directory	entry.

	connectionProtocol	.	Currently	the	only	supported	value	is	a	blank	string.	In	future,	this	option	will	allow	you	to	select	the	Secure
Socket	Layer	(SSL)	for	the	connection	to	the	directory	server.	Note:	this	option	must	be	set	explicitly	to	an	empty	string,	because
it	has	no	default	value.

	authentication	.	Specifies	the	authentication	method	used	when	binding	to	the	LDAP	server.	Can	take	either	of	the	values,
	simple		(username	and	password,	the	default	value)	or		none		(anonymous).	Note:	Simple	Authentication	and	Security	Layer
(SASL)	authentication	is	currently	not	supported.

	destinationBase	.	Specifies	the	DN	of	the	node	whose	children	provide	the	permissions	for	all	destinations.	In	this	case	the	DN	is
a	literal	value	(that	is,	no	string	substitution	is	performed	on	the	property	value).	For	example,	a	typical	value	of	this	property	is
	ou=destinations,o=ActiveMQ,ou=system		(i.e.	the	default	value).

	filter	.	Specifies	an	LDAP	search	filter,	which	is	used	when	looking	up	the	permissions	for	any	kind	of	destination.	The	search
filter	attempts	to	match	one	of	the	children	or	descendants	of	the	queue	or	topic	node.	The	default	value	is		(cn=*)	.

	roleAttribute	.	Specifies	an	attribute	of	the	node	matched	by		filter	,	whose	value	is	the	DN	of	a	role.	Default	value	is
	uniqueMember	.

Security

116

http://activemq.apache.org/security.html
http://activemq.apache.org/cached-ldap-authorization-module.html

	adminPermissionValue	.	Specifies	a	value	that	matches	the		admin		permission.	The	default	value	is		admin	.

	readPermissionValue	.	Specifies	a	value	that	matches	the		read		permission.	The	default	value	is		read	.

	writePermissionValue	.	Specifies	a	value	that	matches	the		write		permission.	The	default	value	is		write	.

	enableListener	.	Whether	or	not	to	enable	a	listener	that	will	automatically	receive	updates	made	in	the	LDAP	server	and	update
the	broker's	authorization	configuration	in	real-time.	The	default	value	is		true	.

The	name	of	the	queue	or	topic	defined	in	LDAP	will	serve	as	the	"match"	for	the	security-setting,	the	permission	value	will	be	mapped
from	the	ActiveMQ	5.x	type	to	the	Artemis	type,	and	the	role	will	be	mapped	as-is.	It's	worth	noting	that	since	the	name	of	queue	or
topic	coming	from	LDAP	will	server	as	the	"match"	for	the	security-setting	the	security-setting	may	not	be	applied	as	expected	to	JMS
destinations	since	Artemis	always	prefixes	JMS	destinations	with	"jms.queue."	or	"jms.topic."	as	necessary.

ActiveMQ	5.x	only	has	3	permission	types	-		read	,		write	,	and		admin	.	These	permission	types	are	described	on	their	website.
However,	as	described	previously,	ActiveMQ	Artemis	has	7	permission	types	-		createDurableQueue	,		deleteDurableQueue	,
	createNonDurableQueue	,		deleteNonDurableQueue	,		send	,		consume	,		browse	,	and		manage	.	Here's	how	the	old	types	are	mapped	to	the
new	types:

	read		-		consume	,		browse	
	write		-		send	
	admin		-		createDurableQueue	,		deleteDurableQueue	,		createNonDurableQueue	,		deleteNonDurableQueue	

As	mentioned,	there	are	a	few	places	where	a	translation	was	performed	to	achieve	some	equivalence.:

This	mapping	doesn't	include	the	Artemis		manage		permission	type	since	there	is	no	type	analogous	for	that	in	ActiveMQ	5.x.

The		admin		permission	in	ActiveMQ	5.x	relates	to	whether	or	not	the	broker	will	auto-create	a	destination	if	it	doesn't	exist	and
the	user	sends	a	message	to	it.	Artemis	automatically	allows	the	automatic	creation	of	a	destination	if	the	user	has	permission	to
send	message	to	it.	Therefore,	the	plugin	will	map	the		admin		permission	to	the	4	aforementioned	permissions	in	Artemis.

Secure	Sockets	Layer	(SSL)	Transport
When	messaging	clients	are	connected	to	servers,	or	servers	are	connected	to	other	servers	(e.g.	via	bridges)	over	an	untrusted	network
then	Apache	ActiveMQ	Artemis	allows	that	traffic	to	be	encrypted	using	the	Secure	Sockets	Layer	(SSL)	transport.

For	more	information	on	configuring	the	SSL	transport,	please	see	Configuring	the	Transport.

User	credentials

Apache	ActiveMQ	Artemis	ships	with	two	security	manager	implementations:

The	legacy,	deprecated		ActiveMQSecurityManager		that	reads	user	credentials,	i.e.	user	names,	passwords	and	role	information	from
properties	files	on	the	classpath	called		artemis-users.properties		and		artemis-roles.properties	.

The	flexible,	pluggable		ActiveMQJAASSecurityManager		which	supports	any	standard	JAAS	login	module.	Artemis	ships	with	several
login	modules	which	will	be	discussed	further	down.	This	is	the	default	security	manager.

JAAS	Security	Manager

When	using	JAAS	much	of	the	configuration	depends	on	which	login	module	is	used.	However,	there	are	a	few	commonalities	for	every
case.	The	first	place	to	look	is	in		bootstrap.xml	.	Here	is	an	example	using	the		PropertiesLogin		JAAS	login	module	which	reads	user,
password,	and	role	information	from	properties	files:

<jaas-security	domain="PropertiesLogin"/>

No	matter	what	login	module	you're	using,	you'll	need	to	specify	it	here	in		bootstrap.xml	.	The		domain		attribute	here	refers	to	the
relevant	login	module	entry	in		login.config	.	For	example:

Security

117

http://activemq.apache.org/security.html

PropertiesLogin	{

				org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule	required

								debug=true

								org.apache.activemq.jaas.properties.user="artemis-users.properties"

								org.apache.activemq.jaas.properties.role="artemis-roles.properties";

};

The		login.config		file	is	a	standard	JAAS	configuration	file.	You	can	read	more	about	this	file	on	Oracle's	website.	In	short,	the	file
defines:

an	alias	for	an	entry	(e.g.		PropertiesLogin)

the	implementation	class	for	the	login	module	(e.g.		org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule)

a	flag	which	indicates	whether	the	success	of	the	login	module	is		required	,		requisite	,		sufficient	,	or		optional		(see	more
details	on	these	flags	in	the	JavaDoc

a	list	of	configuration	options	specific	to	the	login	module	implementation

By	default,	the	location	and	name	of		login.config		is	specified	on	the	Artemis	command-line	which	is	set	by		etc/artemis.profile		on
linux	and		etc\artemis.profile.cmd		on	Windows.

Dual	Authentication

The	JAAS	Security	Manager	also	supports	another	configuration	parameter	-		certificate-domain	.	This	is	useful	when	you	want	to
authenticate	clients	connecting	with	SSL	connections	based	on	their	SSL	certificates	(e.g.	using	the		CertificateLoginModule		discussed
below)	but	you	still	want	to	authenticate	clients	connecting	with	non-SSL	connections	with,	e.g.,	username	and	password.	Here's	an
example	of	what	would	go	in		bootstrap.xml	:

<jaas-security	domain="PropertiesLogin"	certificate-domain="CertLogin"/>

And	here's	the	corresponding		login.config	:

PropertiesLogin	{

			org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule	required

							debug=false

							org.apache.activemq.jaas.properties.user="artemis-users.properties"

							org.apache.activemq.jaas.properties.role="artemis-roles.properties";

};

CertLogin	{

			org.apache.activemq.artemis.spi.core.security.jaas.TextFileCertificateLoginModule	required

							debug=true

							org.apache.activemq.jaas.textfiledn.user="cert-users.properties"

							org.apache.activemq.jaas.textfiledn.role="cert-roles.properties";

};

When	the	broker	is	configured	this	way	then	any	client	connecting	with	SSL	and	a	client	certificate	will	be	authenticated	using
	CertLogin		and	any	client	connecting	without	SSL	will	be	authenticated	using		PropertiesLogin	.

JAAS	Login	Modules

GuestLoginModule

Allows	users	without	credentials	(and,	depending	on	how	it	is	configured,	possibly	also	users	with	invalid	credentials)	to	access	the
broker.	Normally,	the	guest	login	module	is	chained	with	another	login	module,	such	as	a	properties	login	module.	It	is	implemented	by
	org.apache.activemq.artemis.spi.core.security.jaas.GuestLoginModule	.

	org.apache.activemq.jaas.guest.user		-	the	user	name	to	assign;	default	is	"guest"

Security

118

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/LoginConfigFile.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/Configuration.html

	org.apache.activemq.jaas.guest.role		-	the	role	name	to	assign;	default	is	"guests"

	credentialsInvalidate		-	boolean	flag;	if		true	,	reject	login	requests	that	include	a	password	(i.e.	guest	login	succeeds	only	when
the	user	does	not	provide	a	password);	default	is		false	

	debug		-	boolean	flag;	if		true	,	enable	debugging;	this	is	used	only	for	testing	or	debugging;	normally,	it	should	be	set	to		false	,	or
omitted;	default	is		false	

There	are	two	basic	use	cases	for	the	guest	login	module,	as	follows:

Guests	with	no	credentials	or	invalid	credentials.

Guests	with	no	credentials	only.

The	following	snippet	shows	how	to	configure	a	JAAS	login	entry	for	the	use	case	where	users	with	no	credentials	or	invalid	credentials
are	logged	in	as	guests.	In	this	example,	the	guest	login	module	is	used	in	combination	with	the	properties	login	module.

activemq-domain	{

		org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule	sufficient

						debug=true

						org.apache.activemq.jaas.properties.user="artemis-users.properties"

						org.apache.activemq.jaas.properties.role="artemis-roles.properties";

		org.apache.activemq.artemis.spi.core.security.jaas.GuestLoginModule	sufficient

						debug=true

						org.apache.activemq.jaas.guest.user="anyone"

						org.apache.activemq.jaas.guest.role="restricted";

};

Depending	on	the	user	login	data,	authentication	proceeds	as	follows:

User	logs	in	with	a	valid	password	—	the	properties	login	module	successfully	authenticates	the	user	and	returns	immediately.	The
guest	login	module	is	not	invoked.

User	logs	in	with	an	invalid	password	—	the	properties	login	module	fails	to	authenticate	the	user,	and	authentication	proceeds	to
the	guest	login	module.	The	guest	login	module	successfully	authenticates	the	user	and	returns	the	guest	principal.

User	logs	in	with	a	blank	password	—	the	properties	login	module	fails	to	authenticate	the	user,	and	authentication	proceeds	to	the
guest	login	module.	The	guest	login	module	successfully	authenticates	the	user	and	returns	the	guest	principal.

The	following	snipped	shows	how	to	configure	a	JAAS	login	entry	for	the	use	case	where	only	those	users	with	no	credentials	are
logged	in	as	guests.	To	support	this	use	case,	you	must	set	the	credentialsInvalidate	option	to	true	in	the	configuration	of	the	guest	login
module.	You	should	also	note	that,	compared	with	the	preceding	example,	the	order	of	the	login	modules	is	reversed	and	the	flag	attached
to	the	properties	login	module	is	changed	to	requisite.

activemq-guest-when-no-creds-only-domain	{

				org.apache.activemq.artemis.spi.core.security.jaas.GuestLoginModule	sufficient

								debug=true

							credentialsInvalidate=true

							org.apache.activemq.jaas.guest.user="guest"

							org.apache.activemq.jaas.guest.role="guests";

				org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule	requisite

								debug=true

								org.apache.activemq.jaas.properties.user="artemis-users.properties"

								org.apache.activemq.jaas.properties.role="artemis-roles.properties";

};

Depending	on	the	user	login	data,	authentication	proceeds	as	follows:

User	logs	in	with	a	valid	password	—	the	guest	login	module	fails	to	authenticate	the	user	(because	the	user	has	presented	a
password	while	the	credentialsInvalidate	option	is	enabled)	and	authentication	proceeds	to	the	properties	login	module.	The
properties	login	module	successfully	authenticates	the	user	and	returns.

Security

119

User	logs	in	with	an	invalid	password	—	the	guest	login	module	fails	to	authenticate	the	user	and	authentication	proceeds	to	the
properties	login	module.	The	properties	login	module	also	fails	to	authenticate	the	user.	The	nett	result	is	authentication	failure.

User	logs	in	with	a	blank	password	—	the	guest	login	module	successfully	authenticates	the	user	and	returns	immediately.	The
properties	login	module	is	not	invoked.

PropertiesLoginModule

The	JAAS	properties	login	module	provides	a	simple	store	of	authentication	data,	where	the	relevant	user	data	is	stored	in	a	pair	of	flat
files.	This	is	convenient	for	demonstrations	and	testing,	but	for	an	enterprise	system,	the	integration	with	LDAP	is	preferable.	It	is
implemented	by		org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule	.

	org.apache.activemq.jaas.properties.user		-	the	path	to	the	file	which	contains	user	and	password	properties

	org.apache.activemq.jaas.properties.role		-	the	path	to	the	file	which	contains	user	and	role	properties

	reload		-	boolean	flag;	whether	or	not	to	reload	the	properties	files	when	a	modification	occurs;	default	is		false	

	debug		-	boolean	flag;	if		true	,	enable	debugging;	this	is	used	only	for	testing	or	debugging;	normally,	it	should	be	set	to		false	,	or
omitted;	default	is		false	

In	the	context	of	the	properties	login	module,	the		artemis-users.properties		file	consists	of	a	list	of	properties	of	the	form,
	UserName=Password	.	For	example,	to	define	the	users		system	,		user	,	and		guest	,	you	could	create	a	file	like	the	following:

system=manager

user=password

guest=password

The		artemis-roles.properties		file	consists	of	a	list	of	properties	of	the	form,		Role=UserList	,	where	UserList	is	a	comma-separated
list	of	users.	For	example,	to	define	the	roles		admins	,		users	,	and		guests	,	you	could	create	a	file	like	the	following:

admins=system

users=system,user

guests=guest

LDAPLoginModule

The	LDAP	login	module	enables	you	to	perform	authentication	and	authorization	by	checking	the	incoming	credentials	against	user	data
stored	in	a	central	X.500	directory	server.	For	systems	that	already	have	an	X.500	directory	server	in	place,	this	means	that	you	can
rapidly	integrate	ActiveMQ	Artemis	with	the	existing	security	database	and	user	accounts	can	be	managed	using	the	X.500	system.	It	is
implemented	by		org.apache.activemq.artemis.spi.core.security.jaas.LDAPLoginModule	.

	initialContextFactory		-	must	always	be	set	to		com.sun.jndi.ldap.LdapCtxFactory	

	connectionURL		-	specify	the	location	of	the	directory	server	using	an	ldap	URL,	ldap://Host:Port.	You	can	optionally	qualify	this
URL,	by	adding	a	forward	slash,		/	,	followed	by	the	DN	of	a	particular	node	in	the	directory	tree.	For	example,
ldap://ldapserver:10389/ou=system.

	authentication		-	specifies	the	authentication	method	used	when	binding	to	the	LDAP	server.	Can	take	either	of	the	values,
	simple		(username	and	password)	or		none		(anonymous).

	connectionUsername		-	the	DN	of	the	user	that	opens	the	connection	to	the	directory	server.	For	example,		uid=admin,ou=system	.
Directory	servers	generally	require	clients	to	present	username/password	credentials	in	order	to	open	a	connection.

	connectionPassword		-	the	password	that	matches	the	DN	from		connectionUsername	.	In	the	directory	server,	in	the	DIT,	the
password	is	normally	stored	as	a		userPassword		attribute	in	the	corresponding	directory	entry.

	connectionProtocol		-	currently,	the	only	supported	value	is	a	blank	string.	In	future,	this	option	will	allow	you	to	select	the
Secure	Socket	Layer	(SSL)	for	the	connection	to	the	directory	server.	This	option	must	be	set	explicitly	to	an	empty	string,	because
it	has	no	default	value.

Security

120

	userBase		-	selects	a	particular	subtree	of	the	DIT	to	search	for	user	entries.	The	subtree	is	specified	by	a	DN,	which	specifes	the
base	node	of	the	subtree.	For	example,	by	setting	this	option	to		ou=User,ou=ActiveMQ,ou=system	,	the	search	for	user	entries	is
restricted	to	the	subtree	beneath	the		ou=User,ou=ActiveMQ,ou=system		node.

	userSearchMatching		-	specifies	an	LDAP	search	filter,	which	is	applied	to	the	subtree	selected	by		userBase	.	Before	passing	to
the	LDAP	search	operation,	the	string	value	you	provide	here	is	subjected	to	string	substitution,	as	implemented	by	the
	java.text.MessageFormat		class.	Essentially,	this	means	that	the	special	string,		{0}	,	is	substituted	by	the	username,	as	extracted
from	the	incoming	client	credentials.

After	substitution,	the	string	is	interpreted	as	an	LDAP	search	filter,	where	the	LDAP	search	filter	syntax	is	defined	by	the	IETF
standard,	RFC	2254.	A	short	introduction	to	the	search	filter	syntax	is	available	from	Oracle's	JNDI	tutorial,	Search	Filters.

For	example,	if	this	option	is	set	to		(uid={0})		and	the	received	username	is		jdoe	,	the	search	filter	becomes		(uid=jdoe)		after
string	substitution.	If	the	resulting	search	filter	is	applied	to	the	subtree	selected	by	the	user	base,		ou=User,ou=ActiveMQ,ou=system	,
it	would	match	the	entry,		uid=jdoe,ou=User,ou=ActiveMQ,ou=system		(and	possibly	more	deeply	nested	entries,	depending	on	the
specified	search	depth—see	the		userSearchSubtree		option).

	userSearchSubtree		-	specify	the	search	depth	for	user	entries,	relative	to	the	node	specified	by		userBase	.	This	option	is	a
boolean.		false		indicates	it	will	try	to	match	one	of	the	child	entries	of	the		userBase		node	(maps	to
	javax.naming.directory.SearchControls.ONELEVEL_SCOPE).		true		indicates	it	will	try	to	match	any	entry	belonging	to	the	subtree	of
the		userBase		node	(maps	to		javax.naming.directory.SearchControls.SUBTREE_SCOPE).

	userRoleName		-	specifies	the	name	of	the	multi-valued	attribute	of	the	user	entry	that	contains	a	list	of	role	names	for	the	user
(where	the	role	names	are	interpreted	as	group	names	by	the	broker's	authorization	plug-in).	If	you	omit	this	option,	no	role	names
are	extracted	from	the	user	entry.

	roleBase		-	if	you	want	to	store	role	data	directly	in	the	directory	server,	you	can	use	a	combination	of	role	options	(roleBase	,
	roleSearchMatching	,		roleSearchSubtree	,	and		roleName)	as	an	alternative	to	(or	in	addition	to)	specifying	the		userRoleName	
option.	This	option	selects	a	particular	subtree	of	the	DIT	to	search	for	role/group	entries.	The	subtree	is	specified	by	a	DN,	which
specifes	the	base	node	of	the	subtree.	For	example,	by	setting	this	option	to		ou=Group,ou=ActiveMQ,ou=system	,	the	search	for
role/group	entries	is	restricted	to	the	subtree	beneath	the		ou=Group,ou=ActiveMQ,ou=system		node.

	roleName		-	specifies	the	attribute	type	of	the	role	entry	that	contains	the	name	of	the	role/group	(e.g.	C,	O,	OU,	etc.).	If	you	omit
this	option,	the	role	search	feature	is	effectively	disabled.

	roleSearchMatching		-	specifies	an	LDAP	search	filter,	which	is	applied	to	the	subtree	selected	by		roleBase	.	This	works	in	a
similar	manner	to	the		userSearchMatching		option,	except	that	it	supports	two	substitution	strings,	as	follows:

	{0}		-	substitutes	the	full	DN	of	the	matched	user	entry	(that	is,	the	result	of	the	user	search).	For	example,	for	the	user,
	jdoe	,	the	substituted	string	could	be		uid=jdoe,ou=User,ou=ActiveMQ,ou=system	.

	{1}		-	substitutes	the	received	username.	For	example,		jdoe	.

For	example,	if	this	option	is	set	to		(member=uid={1})		and	the	received	username	is		jdoe	,	the	search	filter	becomes
	(member=uid=jdoe)		after	string	substitution	(assuming	ApacheDS	search	filter	syntax).	If	the	resulting	search	filter	is	applied	to	the
subtree	selected	by	the	role	base,		ou=Group,ou=ActiveMQ,ou=system	,	it	matches	all	role	entries	that	have	a		member		attribute	equal	to
	uid=jdoe		(the	value	of	a		member		attribute	is	a	DN).

This	option	must	always	be	set,	even	if	role	searching	is	disabled,	because	it	has	no	default	value.

If	you	use	OpenLDAP,	the	syntax	of	the	search	filter	is		(member:=uid=jdoe)	.

	roleSearchSubtree		-	specify	the	search	depth	for	role	entries,	relative	to	the	node	specified	by		roleBase	.	This	option	can	take
boolean	values,	as	follows:

	false		(default)	-	try	to	match	one	of	the	child	entries	of	the	roleBase	node	(maps	to
	javax.naming.directory.SearchControls.ONELEVEL_SCOPE).

	true		—	try	to	match	any	entry	belonging	to	the	subtree	of	the	roleBase	node	(maps	to
	javax.naming.directory.SearchControls.SUBTREE_SCOPE).

Security

121

http://download.oracle.com/javase/jndi/tutorial/basics/directory/filter.html

	debug		-	boolean	flag;	if		true	,	enable	debugging;	this	is	used	only	for	testing	or	debugging;	normally,	it	should	be	set	to		false	,	or
omitted;	default	is		false	

Add	user	entries	under	the	node	specified	by	the		userBase		option.	When	creating	a	new	user	entry	in	the	directory,	choose	an	object
class	that	supports	the		userPassword		attribute	(for	example,	the		person		or		inetOrgPerson		object	classes	are	typically	suitable).	After
creating	the	user	entry,	add	the		userPassword		attribute,	to	hold	the	user's	password.

If	you	want	to	store	role	data	in	dedicated	role	entries	(where	each	node	represents	a	particular	role),	create	a	role	entry	as	follows.
Create	a	new	child	of	the		roleBase		node,	where	the		objectClass		of	the	child	is		groupOfNames	.	Set	the		cn		(or	whatever	attribute
type	is	specified	by		roleName)	of	the	new	child	node	equal	to	the	name	of	the	role/group.	Define	a		member		attribute	for	each	member
of	the	role/group,	setting	the		member		value	to	the	DN	of	the	corresponding	user	(where	the	DN	is	specified	either	fully,
	uid=jdoe,ou=User,ou=ActiveMQ,ou=system	,	or	partially,		uid=jdoe).

If	you	want	to	add	roles	to	user	entries,	you	would	need	to	customize	the	directory	schema,	by	adding	a	suitable	attribute	type	to	the
user	entry's	object	class.	The	chosen	attribute	type	must	be	capable	of	handling	multiple	values.

CertificateLoginModule

The	JAAS	certificate	authentication	login	module	must	be	used	in	combination	with	SSL	and	the	clients	must	be	configured	with	their
own	certificate.	In	this	scenario,	authentication	is	actually	performed	during	the	SSL/TLS	handshake,	not	directly	by	the	JAAS
certificate	authentication	plug-in.	The	role	of	the	plug-in	is	as	follows:

To	further	constrain	the	set	of	acceptable	users,	because	only	the	user	DNs	explicitly	listed	in	the	relevant	properties	file	are
eligible	to	be	authenticated.

To	associate	a	list	of	groups	with	the	received	user	identity,	facilitating	integration	with	the	authorization	feature.

To	require	the	presence	of	an	incoming	certificate	(by	default,	the	SSL/TLS	layer	is	configured	to	treat	the	presence	of	a	client
certificate	as	optional).

The	JAAS	certificate	login	module	stores	a	collection	of	certificate	DNs	in	a	pair	of	flat	files.	The	files	associate	a	username	and	a	list	of
group	IDs	with	each	DN.

The	certificate	login	module	is	implemented	by	the	following	class:

org.apache.activemq.artemis.spi.core.security.jaas.TextFileCertificateLoginModule

The	following		CertLogin		login	entry	shows	how	to	configure	certificate	login	module	in	the	login.config	file:

CertLogin	{

				org.apache.activemq.artemis.spi.core.security.jaas.TextFileCertificateLoginModule

								debug=true

								org.apache.activemq.jaas.textfiledn.user="users.properties"

								org.apache.activemq.jaas.textfiledn.role="roles.properties";

};

In	the	preceding	example,	the	JAAS	realm	is	configured	to	use	a	single
	org.apache.activemq.artemis.spi.core.security.jaas.TextFileCertificateLoginModule		login	module.	The	options	supported	by	this
login	module	are	as	follows:

	debug		-	boolean	flag;	if	true,	enable	debugging;	this	is	used	only	for	testing	or	debugging;	normally,	it	should	be	set	to		false	,	or
omitted;	default	is		false	

	org.apache.activemq.jaas.textfiledn.user		-	specifies	the	location	of	the	user	properties	file	(relative	to	the	directory	containing
the	login	configuration	file).

	org.apache.activemq.jaas.textfiledn.role		-	specifies	the	location	of	the	role	properties	file	(relative	to	the	directory	containing
the	login	configuration	file).

	reload		-	boolean	flag;	whether	or	not	to	reload	the	properties	files	when	a	modification	occurs;	default	is		false	

Security

122

In	the	context	of	the	certificate	login	module,	the		users.properties		file	consists	of	a	list	of	properties	of	the	form,
	UserName=StringifiedSubjectDN	.	For	example,	to	define	the	users,	system,	user,	and	guest,	you	could	create	a	file	like	the	following:

system=CN=system,O=Progress,C=US

user=CN=humble	user,O=Progress,C=US

guest=CN=anon,O=Progress,C=DE

Each	username	is	mapped	to	a	subject	DN,	encoded	as	a	string	(where	the	string	encoding	is	specified	by	RFC	2253).	For	example,	the
system	username	is	mapped	to	the		CN=system,O=Progress,C=US		subject	DN.	When	performing	authentication,	the	plug-in	extracts	the
subject	DN	from	the	received	certificate,	converts	it	to	the	standard	string	format,	and	compares	it	with	the	subject	DNs	in	the
	users.properties		file	by	testing	for	string	equality.	Consequently,	you	must	be	careful	to	ensure	that	the	subject	DNs	appearing	in	the
	users.properties		file	are	an	exact	match	for	the	subject	DNs	extracted	from	the	user	certificates.

Note:	Technically,	there	is	some	residual	ambiguity	in	the	DN	string	format.	For	example,	the		domainComponent		attribute	could	be
represented	in	a	string	either	as	the	string,		DC	,	or	as	the	OID,		0.9.2342.19200300.100.1.25	.	Normally,	you	do	not	need	to	worry	about
this	ambiguity.	But	it	could	potentially	be	a	problem,	if	you	changed	the	underlying	implementation	of	the	Java	security	layer.

The	easiest	way	to	obtain	the	subject	DNs	from	the	user	certificates	is	by	invoking	the		keytool		utility	to	print	the	certificate	contents.
To	print	the	contents	of	a	certificate	in	a	keystore,	perform	the	following	steps:

1.	 Export	the	certificate	from	the	keystore	file	into	a	temporary	file.	For	example,	to	export	the	certificate	with	alias		broker-
localhost		from	the		broker.ks		keystore	file,	enter	the	following	command:

keytool	-export	-file	broker.export	-alias	broker-localhost	-keystore	broker.ks	-storepass	password

After	running	this	command,	the	exported	certificate	is	in	the	file,		broker.export	.

2.	 Print	out	the	contents	of	the	exported	certificate.	For	example,	to	print	out	the	contents	of		broker.export	,	enter	the	following
command:

keytool	-printcert	-file	broker.export

Which	should	produce	output	similar	to	that	shown	here:

Owner:	CN=localhost,	OU=broker,	O=Unknown,	L=Unknown,	ST=Unknown,	C=Unknown	Issuer:	CN=localhost,	OU=broker,
O=Unknown,	L=Unknown,	ST=Unknown,	C=Unknown	Serial	number:	4537c82e	Valid	from:	Thu	Oct	19	19:47:10	BST	2006
until:	Wed	Jan	17	18:47:10	GMT	2007	Certificate	fingerprints:	MD5:	3F:6C:0C:89:A8:80:29:CC:F5:2D:DA:5C:D7:3F:AB:37
SHA1:	F0:79:0D:04:38:5A:46:CE:86:E1:8A:20:1F:7B:AB:3A:46:E4:34:5C

The	string	following		Owner:		gives	the	subject	DN.	The	format	used	to	enter	the	subject	DN	depends	on	your	platform.	The
	Owner:		string	above	could	be	represented	as	either		CN=localhost,\	OU=broker,\	O=Unknown,\	L=Unknown,\	ST=Unknown,\	C=Unknown	
or		CN=localhost,OU=broker,O=Unknown,L=Unknown,ST=Unknown,C=Unknown	.

The		roles.properties		file	consists	of	a	list	of	properties	of	the	form,		Role=UserList	,	where		UserList		is	a	comma-separated	list	of
users.	For	example,	to	define	the	roles		admins	,		users	,	and		guests	,	you	could	create	a	file	like	the	following:

admins=system

users=system,user

guests=guest

The	simplest	way	to	make	the	login	configuration	available	to	JAAS	is	to	add	the	directory	containing	the	file,		login.config	,	to	your
CLASSPATH.

Changing	the	username/password	for	clustering
In	order	for	cluster	connections	to	work	correctly,	each	node	in	the	cluster	must	make	connections	to	the	other	nodes.	The
username/password	they	use	for	this	should	always	be	changed	from	the	installation	default	to	prevent	a	security	risk.

Please	see	Management	for	instructions	on	how	to	do	this.

Security

123

Securing	the	console

Artemis	comes	with	a	web	console	that	allows	user	to	browse	Artemis	documentation	via	an	embedded	server.	By	default	the	web
access	is	plain	HTTP.	It	is	configured	in		bootstrap.xml	:

<web	bind="http://localhost:8161"	path="web">

				<app	url="jolokia"	war="jolokia-war-1.3.5.war"/>

</web>

Alternatively	you	can	edit	the	above	configuration	to	enable	secure	access	using	HTTPS	protocol.	e.g.:

<web	bind="https://localhost:8443"

				path="web"

				keyStorePath="${artemis.instance}/etc/keystore.jks"

				keyStorePassword="password">

				<app	url="jolokia"	war="jolokia-war-1.3.5.war"/>

</web>

As	shown	in	the	example,	to	enable	https	the	first	thing	to	do	is	config	the		bind		to	be	an		https		url.	In	addition,	You	will	have	to
configure	a	few	extra	properties	desribed	as	below.

	keyStorePath		-	The	path	of	the	key	store	file.

	keyStorePassword		-	The	key	store's	password.

	clientAuth		-	The	boolean	flag	indicates	whether	or	not	client	authentication	is	required.	Default	is		false	.

	trustStorePath		-	The	path	of	the	trust	store	file.	This	is	needed	only	if		clientAuth		is		true	.

	trustStorePassword		-	The	trust	store's	password.

Controlling	JMS	ObjectMessage	deserialization
Artemis	provides	a	simple	class	filtering	mechanism	with	which	a	user	can	specify	which	packages	are	to	be	trusted	and	which	are	not.
Objects	whose	classes	are	from	trusted	packages	can	be	deserialized	without	problem,	whereas	those	from	'not	trusted'	packages	will	be
denied	deserialization.

Artemis	keeps	a		black	list		to	keep	track	of	packages	that	are	not	trusted	and	a		white	list		for	trusted	packages.	By	default	both
lists	are	empty,	meaning	any	serializable	object	is	allowed	to	be	deserialized.	If	an	object	whose	class	matches	one	of	the	packages	in
black	list,	it	is	not	allowed	to	be	deserialized.	If	it	matches	one	in	the	white	list	the	object	can	be	deserialized.	If	a	package	appears	in
both	black	list	and	white	list,	the	one	in	black	list	takes	precedence.	If	a	class	neither	matches	with		black	list		nor	with	the		white
list	,	the	class	deserialization	will	be	denied	unless	the	white	list	is	empty	(meaning	the	user	doesn't	specify	the	white	list	at	all).

A	class	is	considered	as	a	'match'	if

its	full	name	exactly	matches	one	of	the	entries	in	the	list.
its	package	matches	one	of	the	entries	in	the	list	or	is	a	sub-package	of	one	of	the	entries.

For	example,	if	a	class	full	name	is	"org.apache.pkg1.Class1",	some	matching	entries	could	be:

	org.apache.pkg1.Class1		-	exact	match.
	org.apache.pkg1		-	exact	package	match.
	org.apache		--	sub	package	match.

A		*		means	'match-all'	in	a	black	or	white	list.

Specifying	black	list	and	white	list	via	Connection	Factories

Security

124

To	specify	the	white	and	black	lists	one	can	append	properties		deserializationBlackList		and		deserializationWhiteList		respectively
to	a	Connection	Factory's	url	string.	For	example:

	ActiveMQConnectionFactory	factory	=	new	ActiveMQConnectionFactory("vm://0?deserializationBlackList=org.apache.pkg1,org.some.p

kg2");

The	above	statement	creates	a	factory	that	has	a	black	list	contains	two	forbidden	packages,	"org.apache.pkg1"	and	"org.some.pkg2",
separated	by	a	comma.

You	can	also	set	the	values	via	ActiveMQConnectionFactory's	API:

public	void	setDeserializationBlackList(String	blackList);

public	void	setDeserializationWhiteList(String	whiteList);

Again	the	parameters	are	comma	separated	list	of	package/class	names.

Specifying	black	list	and	white	list	via	system	properties

There	are	two	system	properties	available	for	specifying	black	list	and	white	list:

	org.apache.activemq.artemis.jms.deserialization.whitelist		-	comma	separated	list	of	entries	for	the	white	list.
	org.apache.activemq.artemis.jms.deserialization.blacklist		-	comma	separated	list	of	entries	for	the	black	list.

Once	defined,	all	JMS	object	message	deserialization	in	the	VM	is	subject	to	checks	against	the	two	lists.	However	if	you	create	a
ConnectionFactory	and	set	a	new	set	of	black/white	lists	on	it,	the	new	values	will	override	the	system	properties.

Specifying	black	list	and	white	list	for	resource	adapters

Message	beans	using	a	JMS	resource	adapter	to	receive	messages	can	also	control	their	object	deserialization	via	properly	configuring
relevant	properties	for	their	resource	adapters.	There	are	two	properties	that	you	can	configure	with	connection	factories	in	a	resource
adapter:

	deserializationBlackList		-	comma	separated	values	for	black	list
	deserializationWhiteList		-	comma	separated	values	for	white	list

These	properties,	once	specified,	are	eventually	set	on	the	corresponding	internal	factories.

Specifying	black	list	and	white	list	for	REST	interface

Apache	Artemis	REST	interface	(Rest)	allows	interactions	between	jms	client	and	rest	clients.	It	uses	JMS	ObjectMessage	to	wrap	the
actual	user	data	between	the	2	types	of	clients	and	deserialization	is	needed	during	this	process.	If	you	want	to	control	the
deserialization	for	REST,	you	need	to	set	the	black/white	lists	for	it	separately	as	Apache	Artemis	REST	Interface	is	deployed	as	a	web
application.	You	need	to	put	the	black/white	lists	in	its	web.xml,	as	context	parameters,	as	follows

<web-app>

				<context-param>

								<param-name>org.apache.activemq.artemis.jms.deserialization.whitelist</param-name>

								<param-value>some.allowed.class</param-value>

				</context-param>

				<context-param>

								<param-name>org.apache.activemq.artemis.jms.deserialization.blacklist</param-name>

								<param-value>some.forbidden.class</param-value>

				</context-param>

...

</web-app>

The	param-value	for	each	list	is	a	comma	separated	string	value	representing	the	list.

Security

125

Security

126

Resource	Limits
Sometimes	it's	helpful	to	set	particular	limits	on	what	certain	users	can	do	beyond	the	normal	security	settings	related	to	authorization
and	authentication.	For	example,	limiting	how	many	connections	a	user	can	create	or	how	many	queues	a	user	can	create.	This	chapter
will	explain	how	to	configure	such	limits.

Configuring	Limits	Via	Resource	Limit	Settings

Here	is	an	example	of	the	XML	used	to	set	resource	limits:

<resource-limit-settings>

			<resource-limit-setting	match="myUser">

						<max-connections>5</max-connections>

						<max-queues>3</max-queues>

			</resource-limit-setting>

</resource-limit-settings>

Unlike	the		match		from		address-setting	,	this		match		does	not	use	any	wild-card	syntax.	It's	a	simple	1:1	mapping	of	the	limits	to	a
user.

	max-connections		defines	how	many	connections	the	matched	user	can	make	to	the	broker.	The	default	is	-1	which	means	there	is	no
limit.

	max-queues		defines	how	many	queues	the	matched	user	can	create.	The	default	is	-1	which	means	there	is	no	limit.

Resource	Limits

127

The	JMS	Bridge
Apache	ActiveMQ	Artemis	includes	a	fully	functional	JMS	message	bridge.

The	function	of	the	bridge	is	to	consume	messages	from	a	source	queue	or	topic,	and	send	them	to	a	target	queue	or	topic,	typically	on	a
different	server.

Notice:	The	JMS	Bridge	is	not	intended	as	a	replacement	for	transformation	and	more	expert	systems	such	as	Camel.	The	JMS
Bridge	may	be	useful	for	fast	transfers	as	this	chapter	covers,	but	keep	in	mind	that	more	complex	scenarios	requiring
transformations	will	require	you	to	use	a	more	advanced	transformation	system	that	will	play	on	use	cases	that	will	go	beyond
Apache	ActiveMQ	Artemis.

The	source	and	target	servers	do	not	have	to	be	in	the	same	cluster	which	makes	bridging	suitable	for	reliably	sending	messages	from	one
cluster	to	another,	for	instance	across	a	WAN,	and	where	the	connection	may	be	unreliable.

A	bridge	can	be	deployed	as	a	standalone	application,	with	Apache	ActiveMQ	Artemis	standalone	server	or	inside	a	JBoss	AS	instance.
The	source	and	the	target	can	be	located	in	the	same	virtual	machine	or	another	one.

The	bridge	can	also	be	used	to	bridge	messages	from	other	non	Apache	ActiveMQ	Artemis	JMS	servers,	as	long	as	they	are	JMS	1.1
compliant.

Note

Do	not	confuse	a	JMS	bridge	with	a	core	bridge.	A	JMS	bridge	can	be	used	to	bridge	any	two	JMS	1.1	compliant	JMS	providers
and	uses	the	JMS	API.	A	core	bridge	(described	in	Core	Bridges)	is	used	to	bridge	any	two	Apache	ActiveMQ	Artemis	instances
and	uses	the	core	API.	Always	use	a	core	bridge	if	you	can	in	preference	to	a	JMS	bridge.	The	core	bridge	will	typically	provide
better	performance	than	a	JMS	bridge.	Also	the	core	bridge	can	provide	once	and	only	once	delivery	guarantees	without	using
XA.

The	bridge	has	built-in	resilience	to	failure	so	if	the	source	or	target	server	connection	is	lost,	e.g.	due	to	network	failure,	the	bridge	will
retry	connecting	to	the	source	and/or	target	until	they	come	back	online.	When	it	comes	back	online	it	will	resume	operation	as	normal.

The	bridge	can	be	configured	with	an	optional	JMS	selector,	so	it	will	only	consume	messages	matching	that	JMS	selector

It	can	be	configured	to	consume	from	a	queue	or	a	topic.	When	it	consumes	from	a	topic	it	can	be	configured	to	consume	using	a	non
durable	or	durable	subscription

Typically,	the	bridge	is	deployed	by	the	JBoss	Micro	Container	via	a	beans	configuration	file.	This	would	typically	be	deployed	inside
the	JBoss	Application	Server	and	the	following	example	shows	an	example	of	a	beans	file	that	bridges	2	destinations	which	are	actually
on	the	same	server.

The	JMS	Bridge	is	a	simple	POJO	so	can	be	deployed	with	most	frameworks,	simply	instantiate	the
	org.apache.activemq.artemis.api.jms.bridge.impl.JMSBridgeImpl		class	and	set	the	appropriate	parameters.

JMS	Bridge	Parameters
The	main	bean	deployed	is	the		JMSBridge		bean.	The	bean	is	configurable	by	the	parameters	passed	to	its	constructor.

Note

To	let	a	parameter	be	unspecified	(for	example,	if	the	authentication	is	anonymous	or	no	message	selector	is	provided),	use		<null
/>		for	the	unspecified	parameter	value.

Source	Connection	Factory	Factory

This	injects	the		SourceCFF		bean	(also	defined	in	the	beans	file).	This	bean	is	used	to	create	the	source		ConnectionFactory	

Target	Connection	Factory	Factory

The	JMS	Bridge

128

This	injects	the		TargetCFF		bean	(also	defined	in	the	beans	file).	This	bean	is	used	to	create	the	target		ConnectionFactory	

Source	Destination	Factory	Factory

This	injects	the		SourceDestinationFactory		bean	(also	defined	in	the	beans	file).	This	bean	is	used	to	create	the	source		Destination	

Target	Destination	Factory	Factory

This	injects	the		TargetDestinationFactory		bean	(also	defined	in	the	beans	file).	This	bean	is	used	to	create	the	target		Destination	

Source	User	Name

this	parameter	is	the	username	for	creating	the	source	connection

Source	Password

this	parameter	is	the	parameter	for	creating	the	source	connection

Target	User	Name

this	parameter	is	the	username	for	creating	the	target	connection

Target	Password

this	parameter	is	the	password	for	creating	the	target	connection

Selector

This	represents	a	JMS	selector	expression	used	for	consuming	messages	from	the	source	destination.	Only	messages	that	match	the
selector	expression	will	be	bridged	from	the	source	to	the	target	destination

The	selector	expression	must	follow	the	JMS	selector	syntax

Failure	Retry	Interval

This	represents	the	amount	of	time	in	ms	to	wait	between	trying	to	recreate	connections	to	the	source	or	target	servers	when	the
bridge	has	detected	they	have	failed

Max	Retries

This	represents	the	number	of	times	to	attempt	to	recreate	connections	to	the	source	or	target	servers	when	the	bridge	has	detected
they	have	failed.	The	bridge	will	give	up	after	trying	this	number	of	times.		-1		represents	'try	forever'

Quality	Of	Service

This	parameter	represents	the	desired	quality	of	service	mode

Possible	values	are:

	AT_MOST_ONCE	

	DUPLICATES_OK	

	ONCE_AND_ONLY_ONCE	

See	Quality	Of	Service	section	for	a	explanation	of	these	modes.

Max	Batch	Size

This	represents	the	maximum	number	of	messages	to	consume	from	the	source	destination	before	sending	them	in	a	batch	to	the
target	destination.	Its	value	must		>=	1	

Max	Batch	Time

This	represents	the	maximum	number	of	milliseconds	to	wait	before	sending	a	batch	to	target,	even	if	the	number	of	messages
consumed	has	not	reached		MaxBatchSize	.	Its	value	must	be		-1		to	represent	'wait	forever',	or		>=	1		to	specify	an	actual	time

Subscription	Name

The	JMS	Bridge

129

http://docs.oracle.com/javaee/6/api/javax/jms/Message.html

If	the	source	destination	represents	a	topic,	and	you	want	to	consume	from	the	topic	using	a	durable	subscription	then	this
parameter	represents	the	durable	subscription	name

Client	ID

If	the	source	destination	represents	a	topic,	and	you	want	to	consume	from	the	topic	using	a	durable	subscription	then	this
attribute	represents	the	the	JMS	client	ID	to	use	when	creating/looking	up	the	durable	subscription

Add	MessageID	In	Header

If		true	,	then	the	original	message's	message	ID	will	be	appended	in	the	message	sent	to	the	destination	in	the	header
	ACTIVEMQ_BRIDGE_MSG_ID_LIST	.	If	the	message	is	bridged	more	than	once,	each	message	ID	will	be	appended.	This	enables	a
distributed	request-response	pattern	to	be	used

Note

when	you	receive	the	message	you	can	send	back	a	response	using	the	correlation	id	of	the	first	message	id,	so	when	the
original	sender	gets	it	back	it	will	be	able	to	correlate	it.

MBean	Server

To	manage	the	JMS	Bridge	using	JMX,	set	the	MBeanServer	where	the	JMS	Bridge	MBean	must	be	registered	(e.g.	the	JVM
Platform	MBeanServer	or	JBoss	AS	MBeanServer)

ObjectName

If	you	set	the	MBeanServer,	you	also	need	to	set	the	ObjectName	used	to	register	the	JMS	Bridge	MBean	(must	be	unique)

The	"transactionManager"	property	points	to	a	JTA	transaction	manager	implementation	and	should	be	set	if	you	need	to	use	the
'ONCE_AND_ONCE_ONLY'	Quality	of	Service.	Apache	ActiveMQ	Artemis	doesn't	ship	with	such	an	implementation,	but	if	you	are
running	within	an	Application	Server	you	can	inject	the	Transaction	Manager	that	is	shipped.

Source	and	Target	Connection	Factories

The	source	and	target	connection	factory	factories	are	used	to	create	the	connection	factory	used	to	create	the	connection	for	the	source
or	target	server.

The	configuration	example	above	uses	the	default	implementation	provided	by	Apache	ActiveMQ	Artemis	that	looks	up	the	connection
factory	using	JNDI.	For	other	Application	Servers	or	JMS	providers	a	new	implementation	may	have	to	be	provided.	This	can	easily	be
done	by	implementing	the	interface		org.apache.activemq.artemis.jms.bridge.ConnectionFactoryFactory	.

Source	and	Target	Destination	Factories
Again,	similarly,	these	are	used	to	create	or	lookup	up	the	destinations.

In	the	configuration	example	above,	we	have	used	the	default	provided	by	Apache	ActiveMQ	Artemis	that	looks	up	the	destination
using	JNDI.

A	new	implementation	can	be	provided	by	implementing		org.apache.activemq.artemis.jms.bridge.DestinationFactory		interface.

Quality	Of	Service
The	quality	of	service	modes	used	by	the	bridge	are	described	here	in	more	detail.

AT_MOST_ONCE

The	JMS	Bridge

130

With	this	QoS	mode	messages	will	reach	the	destination	from	the	source	at	most	once.	The	messages	are	consumed	from	the	source	and
acknowledged	before	sending	to	the	destination.	Therefore	there	is	a	possibility	that	if	failure	occurs	between	removing	them	from	the
source	and	them	arriving	at	the	destination	they	could	be	lost.	Hence	delivery	will	occur	at	most	once.

This	mode	is	available	for	both	durable	and	non-durable	messages.

DUPLICATES_OK

With	this	QoS	mode,	the	messages	are	consumed	from	the	source	and	then	acknowledged	after	they	have	been	successfully	sent	to	the
destination.	Therefore	there	is	a	possibility	that	if	failure	occurs	after	sending	to	the	destination	but	before	acknowledging	them,	they
could	be	sent	again	when	the	system	recovers.	I.e.	the	destination	might	receive	duplicates	after	a	failure.

This	mode	is	available	for	both	durable	and	non-durable	messages.

ONCE_AND_ONLY_ONCE

This	QoS	mode	ensures	messages	will	reach	the	destination	from	the	source	once	and	only	once.	(Sometimes	this	mode	is	known	as
"exactly	once").	If	both	the	source	and	the	destination	are	on	the	same	Apache	ActiveMQ	Artemis	server	instance	then	this	can	be
achieved	by	sending	and	acknowledging	the	messages	in	the	same	local	transaction.	If	the	source	and	destination	are	on	different	servers
this	is	achieved	by	enlisting	the	sending	and	consuming	sessions	in	a	JTA	transaction.	The	JTA	transaction	is	controlled	by	a	JTA
Transaction	Manager	which	will	need	to	be	set	via	the	settransactionManager	method	on	the	Bridge.

This	mode	is	only	available	for	durable	messages.

Note

For	a	specific	application	it	may	possible	to	provide	once	and	only	once	semantics	without	using	the
ONCE_AND_ONLY_ONCE	QoS	level.	This	can	be	done	by	using	the	DUPLICATES_OK	mode	and	then	checking	for
duplicates	at	the	destination	and	discarding	them.	Some	JMS	servers	provide	automatic	duplicate	message	detection	functionality,
or	this	may	be	possible	to	implement	on	the	application	level	by	maintaining	a	cache	of	received	message	ids	on	disk	and
comparing	received	messages	to	them.	The	cache	would	only	be	valid	for	a	certain	period	of	time	so	this	approach	is	not	as
watertight	as	using	ONCE_AND_ONLY_ONCE	but	may	be	a	good	choice	depending	on	your	specific	application.

Time	outs	and	the	JMS	bridge

There	is	a	possibility	that	the	target	or	source	server	will	not	be	available	at	some	point	in	time.	If	this	occurs	then	the	bridge	will	try
	Max	Retries		to	reconnect	every		Failure	Retry	Interval		milliseconds	as	specified	in	the	JMS	Bridge	definition.

However	since	a	third	party	JNDI	is	used,	in	this	case	the	JBoss	naming	server,	it	is	possible	for	the	JNDI	lookup	to	hang	if	the
network	were	to	disappear	during	the	JNDI	lookup.	To	stop	this	from	occurring	the	JNDI	definition	can	be	configured	to	time	out	if	this
occurs.	To	do	this	set	the		jnp.timeout		and	the		jnp.sotimeout		on	the	Initial	Context	definition.	The	first	sets	the	connection	timeout
for	the	initial	connection	and	the	second	the	read	timeout	for	the	socket.

Note

Once	the	initial	JNDI	connection	has	succeeded	all	calls	are	made	using	RMI.	If	you	want	to	control	the	timeouts	for	the	RMI
connections	then	this	can	be	done	via	system	properties.	JBoss	uses	Sun's	RMI	and	the	properties	can	be	found	here.	The
default	connection	timeout	is	10	seconds	and	the	default	read	timeout	is	18	seconds.

If	you	implement	your	own	factories	for	looking	up	JMS	resources	then	you	will	have	to	bear	in	mind	timeout	issues.

Examples

Please	see	the	examples	chapter	which	shows	how	to	configure	and	use	a	JMS	Bridge	with	JBoss	AS	to	send	messages	to	the	source
destination	and	consume	them	from	the	target	destination	and	how	to	configure	and	use	a	JMS	Bridge	between	two	standalone	Apache
ActiveMQ	Artemis	servers.

The	JMS	Bridge

131

http://docs.oracle.com/javase/6/docs/technotes/guides/rmi/sunrmiproperties.html

The	JMS	Bridge

132

Client	Reconnection	and	Session	Reattachment
Apache	ActiveMQ	Artemis	clients	can	be	configured	to	automatically	reconnect	or	re-attach	to	the	server	in	the	event	that	a	failure	is
detected	in	the	connection	between	the	client	and	the	server.

100%	Transparent	session	re-attachment

If	the	failure	was	due	to	some	transient	failure	such	as	a	temporary	network	failure,	and	the	target	server	was	not	restarted,	then	the
sessions	will	still	be	existent	on	the	server,	assuming	the	client	hasn't	been	disconnected	for	more	than	connection-ttl	Detecting	Dead
Connections

In	this	scenario,	Apache	ActiveMQ	Artemis	will	automatically	re-attach	the	client	sessions	to	the	server	sessions	when	the	connection
reconnects.	This	is	done	100%	transparently	and	the	client	can	continue	exactly	as	if	nothing	had	happened.

The	way	this	works	is	as	follows:

As	Apache	ActiveMQ	Artemis	clients	send	commands	to	their	servers	they	store	each	sent	command	in	an	in-memory	buffer.	In	the
case	that	connection	failure	occurs	and	the	client	subsequently	reattaches	to	the	same	server,	as	part	of	the	reattachment	protocol	the
server	informs	the	client	during	reattachment	with	the	id	of	the	last	command	it	successfully	received	from	that	client.

If	the	client	has	sent	more	commands	than	were	received	before	failover	it	can	replay	any	sent	commands	from	its	buffer	so	that	the
client	and	server	can	reconcile	their	states.

The	size	of	this	buffer	is	configured	by	the		ConfirmationWindowSize		parameter,	when	the	server	has	received		ConfirmationWindowSize	
bytes	of	commands	and	processed	them	it	will	send	back	a	command	confirmation	to	the	client,	and	the	client	can	then	free	up	space	in
the	buffer.

If	you	are	using	JMS	and	you're	using	the	JMS	service	on	the	server	to	load	your	JMS	connection	factory	instances	into	JNDI	then	this
parameter	can	be	configured	in	the	jms	configuration	using	the	element		confirmationWindowSize		a.	If	you're	using	JMS	but	not	using
JNDI	then	you	can	set	these	values	directly	on	the		ActiveMQConnectionFactory		instance	using	the	appropriate	setter	method.

If	you're	using	the	core	API	you	can	set	these	values	directly	on	the		ServerLocator		instance	using	the	appropriate	setter	method.

The	window	is	specified	in	bytes.

Setting	this	parameter	to		-1		disables	any	buffering	and	prevents	any	re-attachment	from	occurring,	forcing	reconnect	instead.	The
default	value	for	this	parameter	is		-1	.	(Which	means	by	default	no	auto	re-attachment	will	occur)

Session	reconnection
Alternatively,	the	server	might	have	actually	been	restarted	after	crashing	or	being	stopped.	In	this	case	any	sessions	will	no	longer	be
existent	on	the	server	and	it	won't	be	possible	to	100%	transparently	re-attach	to	them.

In	this	case,	Apache	ActiveMQ	Artemis	will	automatically	reconnect	the	connection	and	recreate	any	sessions	and	consumers	on	the
server	corresponding	to	the	sessions	and	consumers	on	the	client.	This	process	is	exactly	the	same	as	what	happens	during	failover	onto
a	backup	server.

Client	reconnection	is	also	used	internally	by	components	such	as	core	bridges	to	allow	them	to	reconnect	to	their	target	servers.

Please	see	the	section	on	failover	Automatic	Client	Failover	to	get	a	full	understanding	of	how	transacted	and	non-transacted	sessions	are
reconnected	during	failover/reconnect	and	what	you	need	to	do	to	maintain	_once	and	only	once_delivery	guarantees.

Configuring	reconnection/reattachment	attributes

Client	reconnection	is	configured	using	the	following	parameters:

Client	Reconnection	and	Session	Reattachment

133

	retryInterval	.	This	optional	parameter	determines	the	period	in	milliseconds	between	subsequent	reconnection	attempts,	if	the
connection	to	the	target	server	has	failed.	The	default	value	is		2000		milliseconds.

	retryIntervalMultiplier	.	This	optional	parameter	determines	determines	a	multiplier	to	apply	to	the	time	since	the	last	retry	to
compute	the	time	to	the	next	retry.

This	allows	you	to	implement	an	exponential	backoff	between	retry	attempts.

Let's	take	an	example:

If	we	set		retryInterval		to		1000		ms	and	we	set		retryIntervalMultiplier		to		2.0	,	then,	if	the	first	reconnect	attempt	fails,	we
will	wait		1000		ms	then		2000		ms	then		4000		ms	between	subsequent	reconnection	attempts.

The	default	value	is		1.0		meaning	each	reconnect	attempt	is	spaced	at	equal	intervals.

	maxRetryInterval	.	This	optional	parameter	determines	the	maximum	retry	interval	that	will	be	used.	When	setting
	retryIntervalMultiplier		it	would	otherwise	be	possible	that	subsequent	retries	exponentially	increase	to	ridiculously	large	values.
By	setting	this	parameter	you	can	set	an	upper	limit	on	that	value.	The	default	value	is		2000		milliseconds.

	reconnectAttempts	.	This	optional	parameter	determines	the	total	number	of	reconnect	attempts	to	make	before	giving	up	and
shutting	down.	A	value	of		-1		signifies	an	unlimited	number	of	attempts.	The	default	value	is		0	.

If	you're	using	JMS	and	you're	using	JNDI	on	the	client	to	look	up	your	JMS	connection	factory	instances	then	you	can	specify	these
parameters	in	the	JNDI	context	environment	in,	e.g.		jndi.properties	:

java.naming.factory.initial	=	ActiveMQInitialContextFactory

connection.ConnectionFactory=tcp://localhost:61616?retryInterval=1000&retryIntervalMultiplier=1.5&maxRetryInterval=60000&recon

nectAttempts=1000

If	you're	using	JMS,	but	instantiating	your	JMS	connection	factory	directly,	you	can	specify	the	parameters	using	the	appropriate
setter	methods	on	the		ActiveMQConnectionFactory		immediately	after	creating	it.

If	you're	using	the	core	API	and	instantiating	the		ServerLocator		instance	directly	you	can	also	specify	the	parameters	using	the
appropriate	setter	methods	on	the		ServerLocator		immediately	after	creating	it.

If	your	client	does	manage	to	reconnect	but	the	session	is	no	longer	available	on	the	server,	for	instance	if	the	server	has	been	restarted	or
it	has	timed	out,	then	the	client	won't	be	able	to	re-attach,	and	any		ExceptionListener		or		FailureListener		instances	registered	on	the
connection	or	session	will	be	called.

ExceptionListeners	and	SessionFailureListeners
Please	note,	that	when	a	client	reconnects	or	re-attaches,	any	registered	JMS		ExceptionListener		or	core	API		SessionFailureListener	
will	be	called.

Client	Reconnection	and	Session	Reattachment

134

Diverting	and	Splitting	Message	Flows
Apache	ActiveMQ	Artemis	allows	you	to	configure	objects	called	diverts	with	some	simple	server	configuration.

Diverts	allow	you	to	transparently	divert	messages	routed	to	one	address	to	some	other	address,	without	making	any	changes	to	any
client	application	logic.

Diverts	can	be	exclusive,	meaning	that	the	message	is	diverted	to	the	new	address,	and	does	not	go	to	the	old	address	at	all,	or	they	can
be	non-exclusive	which	means	the	message	continues	to	go	the	old	address,	and	a	copy	of	it	is	also	sent	to	the	new	address.	Non-
exclusive	diverts	can	therefore	be	used	for	splitting	message	flows,	e.g.	there	may	be	a	requirement	to	monitor	every	order	sent	to	an
order	queue.

Diverts	can	also	be	configured	to	have	an	optional	message	filter.	If	specified	then	only	messages	that	match	the	filter	will	be	diverted.

When	an	address	has	both	exclusive	and	non-exclusive	diverts	configured,	the	exclusive	ones	are	processed	first.	If	any	of	the	exclusive
diverts	diverted	the	message,	the	non-exclusive	ones	are	not	processed.

Diverts	can	also	be	configured	to	apply	a		Transformer	.	If	specified,	all	diverted	messages	will	have	the	opportunity	of	being
transformed	by	the		Transformer	.	When	an	address	has	multiple	diverts	configured,	all	of	them	receive	the	same,	original	message.	This
means	that	the	results	of	a	transformer	on	a	message	are	not	directly	available	for	other	diverts	or	their	filters	on	the	same	address.

A	divert	will	only	divert	a	message	to	an	address	on	the	same	server,	however,	if	you	want	to	divert	to	an	address	on	a	different	server,
a	common	pattern	would	be	to	divert	to	a	local	store-and-forward	queue,	then	set	up	a	bridge	which	consumes	from	that	queue	and
forwards	to	an	address	on	a	different	server.

Diverts	are	therefore	a	very	sophisticated	concept,	which	when	combined	with	bridges	can	be	used	to	create	interesting	and	complex
routings.	The	set	of	diverts	on	a	server	can	be	thought	of	as	a	type	of	routing	table	for	messages.	Combining	diverts	with	bridges	allows
you	to	create	a	distributed	network	of	reliable	routing	connections	between	multiple	geographically	distributed	servers,	creating	your
global	messaging	mesh.

Diverts	are	defined	as	xml	in	the		broker.xml		file.	There	can	be	zero	or	more	diverts	in	the	file.

Please	see	the	examples	for	a	full	working	example	showing	you	how	to	configure	and	use	diverts.

Let's	take	a	look	at	some	divert	examples:

Exclusive	Divert

Let's	take	a	look	at	an	exclusive	divert.	An	exclusive	divert	diverts	all	matching	messages	that	are	routed	to	the	old	address	to	the	new
address.	Matching	messages	do	not	get	routed	to	the	old	address.

Here's	some	example	xml	configuration	for	an	exclusive	divert,	it's	taken	from	the	divert	example:

<divert	name="prices-divert">

			<address>jms.topic.priceUpdates</address>

			<forwarding-address>jms.queue.priceForwarding</forwarding-address>

			<filter	string="office='New	York'"/>

			<transformer-class-name>

						org.apache.activemq.artemis.jms.example.AddForwardingTimeTransformer

			</transformer-class-name>

			<exclusive>true</exclusive>

</divert>

We	define	a	divert	called	'	prices-divert	'	that	will	divert	any	messages	sent	to	the	address	'	jms.topic.priceUpdates	'	(this	corresponds
to	any	messages	sent	to	a	JMS	Topic	called	'	priceUpdates	')	to	another	local	address	'	jms.queue.priceForwarding	'	(this	corresponds	to
a	local	JMS	queue	called	'	priceForwarding	'

Diverting	and	Splitting	Message	Flows

135

We	also	specify	a	message	filter	string	so	only	messages	with	the	message	property		office		with	value		New	York		will	get	diverted,	all
other	messages	will	continue	to	be	routed	to	the	normal	address.	The	filter	string	is	optional,	if	not	specified	then	all	messages	will	be
considered	matched.

In	this	example	a	transformer	class	is	specified.	Again	this	is	optional,	and	if	specified	the	transformer	will	be	executed	for	each	matching
message.	This	allows	you	to	change	the	messages	body	or	properties	before	it	is	diverted.	In	this	example	the	transformer	simply	adds	a
header	that	records	the	time	the	divert	happened.

This	example	is	actually	diverting	messages	to	a	local	store	and	forward	queue,	which	is	configured	with	a	bridge	which	forwards	the
message	to	an	address	on	another	ActiveMQ	Artemis	server.	Please	see	the	example	for	more	details.

Non-exclusive	Divert
Now	we'll	take	a	look	at	a	non-exclusive	divert.	Non	exclusive	diverts	are	the	same	as	exclusive	diverts,	but	they	only	forward	a	copy	of
the	message	to	the	new	address.	The	original	message	continues	to	the	old	address

You	can	therefore	think	of	non-exclusive	diverts	as	splitting	a	message	flow.

Non	exclusive	diverts	can	be	configured	in	the	same	way	as	exclusive	diverts	with	an	optional	filter	and	transformer,	here's	an	example
non-exclusive	divert,	again	from	the	divert	example:

<divert	name="order-divert">

				<address>jms.queue.orders</address>

				<forwarding-address>jms.topic.spyTopic</forwarding-address>

				<exclusive>false</exclusive>

</divert>

The	above	divert	example	takes	a	copy	of	every	message	sent	to	the	address	'	jms.queue.orders	'	(Which	corresponds	to	a	JMS	Queue
called	'	orders	')	and	sends	it	to	a	local	address	called	'	jms.topic.SpyTopic	'	(which	corresponds	to	a	JMS	Topic	called	'	SpyTopic	').

Diverting	and	Splitting	Message	Flows

136

Core	Bridges
The	function	of	a	bridge	is	to	consume	messages	from	a	source	queue,	and	forward	them	to	a	target	address,	typically	on	a	different
Apache	ActiveMQ	Artemis	server.

The	source	and	target	servers	do	not	have	to	be	in	the	same	cluster	which	makes	bridging	suitable	for	reliably	sending	messages	from	one
cluster	to	another,	for	instance	across	a	WAN,	or	internet	and	where	the	connection	may	be	unreliable.

The	bridge	has	built	in	resilience	to	failure	so	if	the	target	server	connection	is	lost,	e.g.	due	to	network	failure,	the	bridge	will	retry
connecting	to	the	target	until	it	comes	back	online.	When	it	comes	back	online	it	will	resume	operation	as	normal.

In	summary,	bridges	are	a	way	to	reliably	connect	two	separate	Apache	ActiveMQ	Artemis	servers	together.	With	a	core	bridge	both
source	and	target	servers	must	be	Apache	ActiveMQ	Artemis	servers.

Bridges	can	be	configured	to	provide	once	and	only	once	delivery	guarantees	even	in	the	event	of	the	failure	of	the	source	or	the	target
server.	They	do	this	by	using	duplicate	detection	(described	in	Duplicate	Detection).

Note

Although	they	have	similar	function,	don't	confuse	core	bridges	with	JMS	bridges!

Core	bridges	are	for	linking	an	Apache	ActiveMQ	Artemis	node	with	another	Apache	ActiveMQ	Artemis	node	and	do	not	use
the	JMS	API.	A	JMS	Bridge	is	used	for	linking	any	two	JMS	1.1	compliant	JMS	providers.	So,	a	JMS	Bridge	could	be	used	for
bridging	to	or	from	different	JMS	compliant	messaging	system.	It's	always	preferable	to	use	a	core	bridge	if	you	can.	Core	bridges
use	duplicate	detection	to	provide	once	and	only	once	guarantees.	To	provide	the	same	guarantee	using	a	JMS	bridge	you	would
have	to	use	XA	which	has	a	higher	overhead	and	is	more	complex	to	configure.

Configuring	Bridges
Bridges	are	configured	in		broker.xml	.	Let's	kick	off	with	an	example	(this	is	actually	from	the	bridge	example):

<bridge	name="my-bridge">

			<queue-name>jms.queue.sausage-factory</queue-name>

			<forwarding-address>jms.queue.mincing-machine</forwarding-address>

			<filter	string="name='aardvark'"/>

			<transformer-class-name>

						org.apache.activemq.artemis.jms.example.HatColourChangeTransformer

			</transformer-class-name>

			<retry-interval>1000</retry-interval>

			<ha>true</ha>

			<retry-interval-multiplier>1.0</retry-interval-multiplier>

			<initial-connect-attempts>-1</initial-connect-attempts>

			<reconnect-attempts>-1</reconnect-attempts>

			<failover-on-server-shutdown>false</failover-on-server-shutdown>

			<use-duplicate-detection>true</use-duplicate-detection>

			<confirmation-window-size>10000000</confirmation-window-size>

			<user>foouser</user>

			<password>foopassword</password>

			<static-connectors>

						<connector-ref>remote-connector</connector-ref>

			</static-connectors>

			<!--	alternative	to	static-connectors

			<discovery-group-ref	discovery-group-name="bridge-discovery-group"/>

			-->

</bridge>

In	the	above	example	we	have	shown	all	the	parameters	its	possible	to	configure	for	a	bridge.	In	practice	you	might	use	many	of	the
defaults	so	it	won't	be	necessary	to	specify	them	all	explicitly.

Let's	take	a	look	at	all	the	parameters	in	turn:

Core	Bridges

137

	name		attribute.	All	bridges	must	have	a	unique	name	in	the	server.

	queue-name	.	This	is	the	unique	name	of	the	local	queue	that	the	bridge	consumes	from,	it's	a	mandatory	parameter.

The	queue	must	already	exist	by	the	time	the	bridge	is	instantiated	at	start-up.

Note

If	you're	using	JMS	then	normally	the	JMS	configuration		activemq-jms.xml		is	loaded	after	the	core	configuration	file
	broker.xml		is	loaded.	If	your	bridge	is	consuming	from	a	JMS	queue	then	you'll	need	to	make	sure	the	JMS	queue	is	also
deployed	as	a	core	queue	in	the	core	configuration.	Take	a	look	at	the	bridge	example	for	an	example	of	how	this	is	done.

	forwarding-address	.	This	is	the	address	on	the	target	server	that	the	message	will	be	forwarded	to.	If	a	forwarding	address	is	not
specified,	then	the	original	address	of	the	message	will	be	retained.

	filter-string	.	An	optional	filter	string	can	be	supplied.	If	specified	then	only	messages	which	match	the	filter	expression
specified	in	the	filter	string	will	be	forwarded.	The	filter	string	follows	the	ActiveMQ	Artemis	filter	expression	syntax	described	in
Filter	Expressions.

	transformer-class-name	.	An	optional	transformer-class-name	can	be	specified.	This	is	the	name	of	a	user-defined	class	which
implements	the		org.apache.activemq.artemis.core.server.cluster.Transformer		interface.

If	this	is	specified	then	the	transformer's		transform()		method	will	be	invoked	with	the	message	before	it	is	forwarded.	This	gives
you	the	opportunity	to	transform	the	message's	header	or	body	before	forwarding	it.

	ha	.	This	optional	parameter	determines	whether	or	not	this	bridge	should	support	high	availability.	True	means	it	will	connect	to
any	available	server	in	a	cluster	and	support	failover.	The	default	value	is		false	.

	retry-interval	.	This	optional	parameter	determines	the	period	in	milliseconds	between	subsequent	reconnection	attempts,	if	the
connection	to	the	target	server	has	failed.	The	default	value	is		2000	milliseconds.

	retry-interval-multiplier	.	This	optional	parameter	determines	determines	a	multiplier	to	apply	to	the	time	since	the	last	retry	to
compute	the	time	to	the	next	retry.

This	allows	you	to	implement	an	exponential	backoff	between	retry	attempts.

Let's	take	an	example:

If	we	set		retry-interval	to		1000		ms	and	we	set		retry-interval-multiplier		to		2.0	,	then,	if	the	first	reconnect	attempt	fails,
we	will	wait		1000		ms	then		2000		ms	then		4000		ms	between	subsequent	reconnection	attempts.

The	default	value	is		1.0		meaning	each	reconnect	attempt	is	spaced	at	equal	intervals.

	initial-connect-attempts	.	This	optional	parameter	determines	the	total	number	of	initial	connect	attempts	the	bridge	will	make
before	giving	up	and	shutting	down.	A	value	of		-1		signifies	an	unlimited	number	of	attempts.	The	default	value	is		-1	.

	reconnect-attempts	.	This	optional	parameter	determines	the	total	number	of	reconnect	attempts	the	bridge	will	make	before	giving
up	and	shutting	down.	A	value	of		-1		signifies	an	unlimited	number	of	attempts.	The	default	value	is		-1	.

	failover-on-server-shutdown	.	This	optional	parameter	determines	whether	the	bridge	will	attempt	to	failover	onto	a	backup	server
(if	specified)	when	the	target	server	is	cleanly	shutdown	rather	than	crashed.

The	bridge	connector	can	specify	both	a	live	and	a	backup	server,	if	it	specifies	a	backup	server	and	this	parameter	is	set	to		true	
then	if	the	target	server	is	cleanly	shutdown	the	bridge	connection	will	attempt	to	failover	onto	its	backup.	If	the	bridge	connector
has	no	backup	server	configured	then	this	parameter	has	no	effect.

Sometimes	you	want	a	bridge	configured	with	a	live	and	a	backup	target	server,	but	you	don't	want	to	failover	to	the	backup	if	the
live	server	is	simply	taken	down	temporarily	for	maintenance,	this	is	when	this	parameter	comes	in	handy.

The	default	value	for	this	parameter	is		false	.

	use-duplicate-detection	.	This	optional	parameter	determines	whether	the	bridge	will	automatically	insert	a	duplicate	id	property
into	each	message	that	it	forwards.

Core	Bridges

138

Doing	so,	allows	the	target	server	to	perform	duplicate	detection	on	messages	it	receives	from	the	source	server.	If	the	connection
fails	or	server	crashes,	then,	when	the	bridge	resumes	it	will	resend	unacknowledged	messages.	This	might	result	in	duplicate
messages	being	sent	to	the	target	server.	By	enabling	duplicate	detection	allows	these	duplicates	to	be	screened	out	and	ignored.

This	allows	the	bridge	to	provide	a	once	and	only	once	delivery	guarantee	without	using	heavyweight	methods	such	as	XA	(see
Duplicate	Detection	for	more	information).

The	default	value	for	this	parameter	is		true	.

	confirmation-window-size	.	This	optional	parameter	determines	the		confirmation-window-size		to	use	for	the	connection	used	to
forward	messages	to	the	target	node.	This	attribute	is	described	in	section	Reconnection	and	Session	Reattachment

Warning

When	using	the	bridge	to	forward	messages	to	an	address	which	uses	the		BLOCK			address-full-policy		from	a	queue	which
has	a		max-size-bytes		set	it's	important	that		confirmation-window-size		is	less	than	or	equal	to		max-size-bytes		to	prevent
the	flow	of	messages	from	ceasing.

	producer-window-size	.	This	optional	parameter	determines	the	producer	flow	control	through	the	bridge.	You	usually	leave	this	off
unless	you	are	dealing	with	huge	large	messages.

Default=-1	(disabled)

	user	.	This	optional	parameter	determines	the	user	name	to	use	when	creating	the	bridge	connection	to	the	remote	server.	If	it	is
not	specified	the	default	cluster	user	specified	by		cluster-user		in		broker.xml		will	be	used.

	password	.	This	optional	parameter	determines	the	password	to	use	when	creating	the	bridge	connection	to	the	remote	server.	If	it
is	not	specified	the	default	cluster	password	specified	by		cluster-password		in		broker.xml		will	be	used.

	static-connectors		or		discovery-group-ref	.	Pick	either	of	these	options	to	connect	the	bridge	to	the	target	server.

The		static-connectors		is	a	list	of		connector-ref		elements	pointing	to		connector		elements	defined	elsewhere.	A	connector
encapsulates	knowledge	of	what	transport	to	use	(TCP,	SSL,	HTTP	etc)	as	well	as	the	server	connection	parameters	(host,	port
etc).	For	more	information	about	what	connectors	are	and	how	to	configure	them,	please	see	Configuring	the	Transport.

The		discovery-group-ref		element	has	one	attribute	-		discovery-group-name	.	This	attribute	points	to	a		discovery-group		defined
elsewhere.	For	more	information	about	what	discovery-groups	are	and	how	to	configure	them,	please	see	Discovery	Groups.

Core	Bridges

139

Duplicate	Message	Detection
Apache	ActiveMQ	Artemis	includes	powerful	automatic	duplicate	message	detection,	filtering	out	duplicate	messages	without	you
having	to	code	your	own	fiddly	duplicate	detection	logic	at	the	application	level.	This	chapter	will	explain	what	duplicate	detection	is,
how	Apache	ActiveMQ	Artemis	uses	it	and	how	and	where	to	configure	it.

When	sending	messages	from	a	client	to	a	server,	or	indeed	from	a	server	to	another	server,	if	the	target	server	or	connection	fails
sometime	after	sending	the	message,	but	before	the	sender	receives	a	response	that	the	send	(or	commit)	was	processed	successfully
then	the	sender	cannot	know	for	sure	if	the	message	was	sent	successfully	to	the	address.

If	the	target	server	or	connection	failed	after	the	send	was	received	and	processed	but	before	the	response	was	sent	back	then	the
message	will	have	been	sent	to	the	address	successfully,	but	if	the	target	server	or	connection	failed	before	the	send	was	received	and
finished	processing	then	it	will	not	have	been	sent	to	the	address	successfully.	From	the	senders	point	of	view	it's	not	possible	to
distinguish	these	two	cases.

When	the	server	recovers	this	leaves	the	client	in	a	difficult	situation.	It	knows	the	target	server	failed,	but	it	does	not	know	if	the	last
message	reached	its	destination	ok.	If	it	decides	to	resend	the	last	message,	then	that	could	result	in	a	duplicate	message	being	sent	to	the
address.	If	each	message	was	an	order	or	a	trade	then	this	could	result	in	the	order	being	fulfilled	twice	or	the	trade	being	double	booked.
This	is	clearly	not	a	desirable	situation.

Sending	the	message(s)	in	a	transaction	does	not	help	out	either.	If	the	server	or	connection	fails	while	the	transaction	commit	is	being
processed	it	is	also	indeterminate	whether	the	transaction	was	successfully	committed	or	not!

To	solve	these	issues	Apache	ActiveMQ	Artemis	provides	automatic	duplicate	messages	detection	for	messages	sent	to	addresses.

Using	Duplicate	Detection	for	Message	Sending

Enabling	duplicate	message	detection	for	sent	messages	is	simple:	you	just	need	to	set	a	special	property	on	the	message	to	a	unique
value.	You	can	create	the	value	however	you	like,	as	long	as	it	is	unique.	When	the	target	server	receives	the	message	it	will	check	if	that
property	is	set,	if	it	is,	then	it	will	check	in	its	in	memory	cache	if	it	has	already	received	a	message	with	that	value	of	the	header.	If	it
has	received	a	message	with	the	same	value	before	then	it	will	ignore	the	message.

Note

Using	duplicate	detection	to	move	messages	between	nodes	can	give	you	the	same	once	and	only	once	delivery	guarantees	as	if
you	were	using	an	XA	transaction	to	consume	messages	from	source	and	send	them	to	the	target,	but	with	less	overhead	and
much	easier	configuration	than	using	XA.

If	you're	sending	messages	in	a	transaction	then	you	don't	have	to	set	the	property	for	every	message	you	send	in	that	transaction,	you
only	need	to	set	it	once	in	the	transaction.	If	the	server	detects	a	duplicate	message	for	any	message	in	the	transaction,	then	it	will	ignore
the	entire	transaction.

The	name	of	the	property	that	you	set	is	given	by	the	value	of
	org.apache.activemq.artemis.api.core.Message.HDR_DUPLICATE_DETECTION_ID	,	which	is		_AMQ_DUPL_ID	

The	value	of	the	property	can	be	of	type		byte[]		or		SimpleString		if	you're	using	the	core	API.	If	you're	using	JMS	it	must	be	a
	String	,	and	its	value	should	be	unique.	An	easy	way	of	generating	a	unique	id	is	by	generating	a	UUID.

Here's	an	example	of	setting	the	property	using	the	core	API:

...

ClientMessage	message	=	session.createMessage(true);

SimpleString	myUniqueID	=	"This	is	my	unique	id";			//	Could	use	a	UUID	for	this

message.setStringProperty(HDR_DUPLICATE_DETECTION_ID,	myUniqueID);

Duplicate	Message	Detection

140

And	here's	an	example	using	the	JMS	API:

...

Message	jmsMessage	=	session.createMessage();

String	myUniqueID	=	"This	is	my	unique	id";			//	Could	use	a	UUID	for	this

message.setStringProperty(HDR_DUPLICATE_DETECTION_ID.toString(),	myUniqueID);

...

Configuring	the	Duplicate	ID	Cache

The	server	maintains	caches	of	received	values	of	the		org.apache.activemq.artemis.core.message.impl.HDR_DUPLICATE_DETECTION_ID	
property	sent	to	each	address.	Each	address	has	its	own	distinct	cache.

The	cache	is	a	circular	fixed	size	cache.	If	the	cache	has	a	maximum	size	of		n		elements,	then	the		n	+	1	th	id	stored	will	overwrite	the
	0	th	element	in	the	cache.

The	maximum	size	of	the	cache	is	configured	by	the	parameter		id-cache-size		in		broker.xml	,	the	default	value	is		2000		elements.

The	caches	can	also	be	configured	to	persist	to	disk	or	not.	This	is	configured	by	the	parameter		persist-id-cache	,	also	in		broker.xml	.
If	this	is	set	to		true		then	each	id	will	be	persisted	to	permanent	storage	as	they	are	received.	The	default	value	for	this	parameter	is
	true	.

Note

When	choosing	a	size	of	the	duplicate	id	cache	be	sure	to	set	it	to	a	larger	enough	size	so	if	you	resend	messages	all	the
previously	sent	ones	are	in	the	cache	not	having	been	overwritten.

Duplicate	Detection	and	Bridges

Core	bridges	can	be	configured	to	automatically	add	a	unique	duplicate	id	value	(if	there	isn't	already	one	in	the	message)	before
forwarding	the	message	to	it's	target.	This	ensures	that	if	the	target	server	crashes	or	the	connection	is	interrupted	and	the	bridge	resends
the	message,	then	if	it	has	already	been	received	by	the	target	server,	it	will	be	ignored.

To	configure	a	core	bridge	to	add	the	duplicate	id	header,	simply	set	the		use-duplicate-detection		to		true		when	configuring	a	bridge	in
	broker.xml	.

The	default	value	for	this	parameter	is		true	.

For	more	information	on	core	bridges	and	how	to	configure	them,	please	see	Core	Bridges.

Duplicate	Detection	and	Cluster	Connections

Cluster	connections	internally	use	core	bridges	to	move	messages	reliable	between	nodes	of	the	cluster.	Consequently	they	can	also	be
configured	to	insert	the	duplicate	id	header	for	each	message	they	move	using	their	internal	bridges.

To	configure	a	cluster	connection	to	add	the	duplicate	id	header,	simply	set	the		use-duplicate-detection		to		true		when	configuring	a
cluster	connection	in		broker.xml	.

The	default	value	for	this	parameter	is		true	.

For	more	information	on	cluster	connections	and	how	to	configure	them,	please	see	Clusters.

Duplicate	Message	Detection

141

Duplicate	Message	Detection

142

Clusters

Clusters	Overview

Apache	ActiveMQ	Artemis	clusters	allow	groups	of	Apache	ActiveMQ	Artemis	servers	to	be	grouped	together	in	order	to	share
message	processing	load.	Each	active	node	in	the	cluster	is	an	active	Apache	ActiveMQ	Artemis	server	which	manages	its	own	messages
and	handles	its	own	connections.

The	cluster	is	formed	by	each	node	declaring	cluster	connections	to	other	nodes	in	the	core	configuration	file		broker.xml	.	When	a	node
forms	a	cluster	connection	to	another	node,	internally	it	creates	a	core	bridge	(as	described	in	Core	Bridges)	connection	between	it	and
the	other	node,	this	is	done	transparently	behind	the	scenes	-	you	don't	have	to	declare	an	explicit	bridge	for	each	node.	These	cluster
connections	allow	messages	to	flow	between	the	nodes	of	the	cluster	to	balance	load.

Nodes	can	be	connected	together	to	form	a	cluster	in	many	different	topologies,	we	will	discuss	a	couple	of	the	more	common	topologies
later	in	this	chapter.

We'll	also	discuss	client	side	load	balancing,	where	we	can	balance	client	connections	across	the	nodes	of	the	cluster,	and	we'll	consider
message	redistribution	where	Apache	ActiveMQ	Artemis	will	redistribute	messages	between	nodes	to	avoid	starvation.

Another	important	part	of	clustering	is	server	discovery	where	servers	can	broadcast	their	connection	details	so	clients	or	other	servers
can	connect	to	them	with	the	minimum	of	configuration.

Warning

Once	a	cluster	node	has	been	configured	it	is	common	to	simply	copy	that	configuration	to	other	nodes	to	produce	a	symmetric
cluster.	However,	care	must	be	taken	when	copying	the	Apache	ActiveMQ	Artemis	files.	Do	not	copy	the	Apache	ActiveMQ
Artemis	data	(i.e.	the		bindings	,		journal	,	and		large-messages		directories)	from	one	node	to	another.	When	a	node	is	started
for	the	first	time	and	initializes	its	journal	files	it	also	persists	a	special	identifier	to	the		journal		directory.	This	id	must	be
unique	among	nodes	in	the	cluster	or	the	cluster	will	not	form	properly.

Server	discovery
Server	discovery	is	a	mechanism	by	which	servers	can	propagate	their	connection	details	to:

Messaging	clients.	A	messaging	client	wants	to	be	able	to	connect	to	the	servers	of	the	cluster	without	having	specific	knowledge	of
which	servers	in	the	cluster	are	up	at	any	one	time.

Other	servers.	Servers	in	a	cluster	want	to	be	able	to	create	cluster	connections	to	each	other	without	having	prior	knowledge	of	all
the	other	servers	in	the	cluster.

This	information,	let's	call	it	the	Cluster	Topology,	is	actually	sent	around	normal	Apache	ActiveMQ	Artemis	connections	to	clients	and
to	other	servers	over	cluster	connections.	This	being	the	case	we	need	a	way	of	establishing	the	initial	first	connection.	This	can	be	done
using	dynamic	discovery	techniques	like	UDP	and	JGroups,	or	by	providing	a	list	of	initial	connectors.

Dynamic	Discovery

Server	discovery	uses	UDP	multicast	or	JGroups	to	broadcast	server	connection	settings.

Broadcast	Groups

A	broadcast	group	is	the	means	by	which	a	server	broadcasts	connectors	over	the	network.	A	connector	defines	a	way	in	which	a	client
(or	other	server)	can	make	connections	to	the	server.	For	more	information	on	what	a	connector	is,	please	see	Configuring	the	Transport.

Clusters

143

http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://www.jgroups.org/
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://www.jgroups.org/

The	broadcast	group	takes	a	set	of	connector	pairs,	each	connector	pair	contains	connection	settings	for	a	live	and	backup	server	(if	one
exists)	and	broadcasts	them	on	the	network.	Depending	on	which	broadcasting	technique	you	configure	the	cluster,	it	uses	either	UDP	or
JGroups	to	broadcast	connector	pairs	information.

Broadcast	groups	are	defined	in	the	server	configuration	file		broker.xml	.	There	can	be	many	broadcast	groups	per	Apache	ActiveMQ
Artemis	server.	All	broadcast	groups	must	be	defined	in	a		broadcast-groups		element.

Let's	take	a	look	at	an	example	broadcast	group	from		broker.xml		that	defines	a	UDP	broadcast	group:

<broadcast-groups>

			<broadcast-group	name="my-broadcast-group">

						<local-bind-address>172.16.9.3</local-bind-address>

						<local-bind-port>5432</local-bind-port>

						<group-address>231.7.7.7</group-address>

						<group-port>9876</group-port>

						<broadcast-period>2000</broadcast-period>

						<connector-ref>netty-connector</connector-ref>

			</broadcast-group>

</broadcast-groups>

Some	of	the	broadcast	group	parameters	are	optional	and	you'll	normally	use	the	defaults,	but	we	specify	them	all	in	the	above	example
for	clarity.	Let's	discuss	each	one	in	turn:

	name		attribute.	Each	broadcast	group	in	the	server	must	have	a	unique	name.

	local-bind-address	.	This	is	the	local	bind	address	that	the	datagram	socket	is	bound	to.	If	you	have	multiple	network	interfaces
on	your	server,	you	would	specify	which	one	you	wish	to	use	for	broadcasts	by	setting	this	property.	If	this	property	is	not
specified	then	the	socket	will	be	bound	to	the	wildcard	address,	an	IP	address	chosen	by	the	kernel.	This	is	a	UDP	specific
attribute.

	local-bind-port	.	If	you	want	to	specify	a	local	port	to	which	the	datagram	socket	is	bound	you	can	specify	it	here.	Normally	you
would	just	use	the	default	value	of		-1		which	signifies	that	an	anonymous	port	should	be	used.	This	parameter	is	always	specified
in	conjunction	with		local-bind-address	.	This	is	a	UDP	specific	attribute.

	group-address	.	This	is	the	multicast	address	to	which	the	data	will	be	broadcast.	It	is	a	class	D	IP	address	in	the	range		224.0.0.0	
to		239.255.255.255	,	inclusive.	The	address		224.0.0.0		is	reserved	and	is	not	available	for	use.	This	parameter	is	mandatory.	This
is	a	UDP	specific	attribute.

	group-port	.	This	is	the	UDP	port	number	used	for	broadcasting.	This	parameter	is	mandatory.	This	is	a	UDP	specific	attribute.

	broadcast-period	.	This	is	the	period	in	milliseconds	between	consecutive	broadcasts.	This	parameter	is	optional,	the	default	value
is		2000		milliseconds.

	connector-ref	.	This	specifies	the	connector	and	optional	backup	connector	that	will	be	broadcasted	(see	Configuring	the
Transport	for	more	information	on	connectors).

Here	is	another	example	broadcast	group	that	defines	a	JGroups	broadcast	group:

<broadcast-groups>

			<broadcast-group	name="my-broadcast-group">

						<jgroups-file>test-jgroups-file_ping.xml</jgroups-file>

						<jgroups-channel>activemq_broadcast_channel</jgroups-channel>

						<broadcast-period>2000</broadcast-period>

				<connector-ref	connector-name="netty-connector"/>

			</broadcast-group>

</broadcast-groups>

To	be	able	to	use	JGroups	to	broadcast,	one	must	specify	two	attributes,	i.e.		jgroups-file		and		jgroups-channel	,	as	discussed	in
details	as	following:

	jgroups-file		attribute.	This	is	the	name	of	JGroups	configuration	file.	It	will	be	used	to	initialize	JGroups	channels.	Make	sure
the	file	is	in	the	java	resource	path	so	that	Apache	ActiveMQ	Artemis	can	load	it.

Clusters

144

	jgroups-channel		attribute.	The	name	that	JGroups	channels	connect	to	for	broadcasting.

Note

The	JGroups	attributes	(jgroups-file		and		jgroups-channel)	and	UDP	specific	attributes	described	above	are	exclusive	of	each
other.	Only	one	set	can	be	specified	in	a	broadcast	group	configuration.	Don't	mix	them!

The	following	is	an	example	of	a	JGroups	file

<config	xmlns="urn:org:jgroups"

			xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

			xsi:schemaLocation="urn:org:jgroups	http://www.jgroups.org/schema/JGroups-3.0.xsd">

			<TCP	loopback="true"

						recv_buf_size="20000000"

						send_buf_size="640000"

						discard_incompatible_packets="true"

						max_bundle_size="64000"

						max_bundle_timeout="30"

						enable_bundling="true"

						use_send_queues="false"

						sock_conn_timeout="300"

						thread_pool.enabled="true"

						thread_pool.min_threads="1"

						thread_pool.max_threads="10"

						thread_pool.keep_alive_time="5000"

						thread_pool.queue_enabled="false"

						thread_pool.queue_max_size="100"

						thread_pool.rejection_policy="run"

						oob_thread_pool.enabled="true"

						oob_thread_pool.min_threads="1"

						oob_thread_pool.max_threads="8"

						oob_thread_pool.keep_alive_time="5000"

						oob_thread_pool.queue_enabled="false"

						oob_thread_pool.queue_max_size="100"

						oob_thread_pool.rejection_policy="run"/>

			<FILE_PING	location="../file.ping.dir"/>

			<MERGE2	max_interval="30000"

						min_interval="10000"/>

			<FD_SOCK/>

			<FD	timeout="10000"	max_tries="5"	/>

			<VERIFY_SUSPECT	timeout="1500"		/>

			<BARRIER	/>

			<pbcast.NAKACK

						use_mcast_xmit="false"

						retransmit_timeout="300,600,1200,2400,4800"

						discard_delivered_msgs="true"/>

			<UNICAST	timeout="300,600,1200"	/>

			<pbcast.STABLE	stability_delay="1000"	desired_avg_gossip="50000"

						max_bytes="400000"/>

			<pbcast.GMS	print_local_addr="true"	join_timeout="3000"

						view_bundling="true"/>

			<FC	max_credits="2000000"

						min_threshold="0.10"/>

			<FRAG2	frag_size="60000"		/>

			<pbcast.STATE_TRANSFER/>

			<pbcast.FLUSH	timeout="0"/>

</config>

As	it	shows,	the	file	content	defines	a	jgroups	protocol	stacks.	If	you	want	Apache	ActiveMQ	Artemis	to	use	this	stacks	for	channel
creation,	you	have	to	make	sure	the	value	of		jgroups-file		in	your	broadcast-group/discovery-group	configuration	to	be	the	name	of
this	jgroups	configuration	file.	For	example	if	the	above	stacks	configuration	is	stored	in	a	file	named	"jgroups-stacks.xml"	then	your
	jgroups-file		should	be	like

<jgroups-file>jgroups-stacks.xml</jgroups-file>

Clusters

145

Discovery	Groups

While	the	broadcast	group	defines	how	connector	information	is	broadcasted	from	a	server,	a	discovery	group	defines	how	connector
information	is	received	from	a	broadcast	endpoint	(a	UDP	multicast	address	or	JGroup	channel).

A	discovery	group	maintains	a	list	of	connector	pairs	-	one	for	each	broadcast	by	a	different	server.	As	it	receives	broadcasts	on	the
broadcast	endpoint	from	a	particular	server	it	updates	its	entry	in	the	list	for	that	server.

If	it	has	not	received	a	broadcast	from	a	particular	server	for	a	length	of	time	it	will	remove	that	server's	entry	from	its	list.

Discovery	groups	are	used	in	two	places	in	Apache	ActiveMQ	Artemis:

By	cluster	connections	so	they	know	how	to	obtain	an	initial	connection	to	download	the	topology

By	messaging	clients	so	they	know	how	to	obtain	an	initial	connection	to	download	the	topology

Although	a	discovery	group	will	always	accept	broadcasts,	its	current	list	of	available	live	and	backup	servers	is	only	ever	used	when	an
initial	connection	is	made,	from	then	server	discovery	is	done	over	the	normal	Apache	ActiveMQ	Artemis	connections.

Note

Each	discovery	group	must	be	configured	with	broadcast	endpoint	(UDP	or	JGroups)	that	matches	its	broadcast	group
counterpart.	For	example,	if	broadcast	is	configured	using	UDP,	the	discovery	group	must	also	use	UDP,	and	the	same	multicast
address.

Defining	Discovery	Groups	on	the	Server

For	cluster	connections,	discovery	groups	are	defined	in	the	server	side	configuration	file		broker.xml	.	All	discovery	groups	must	be
defined	inside	a		discovery-groups		element.	There	can	be	many	discovery	groups	defined	by	Apache	ActiveMQ	Artemis	server.	Let's
look	at	an	example:

<discovery-groups>

			<discovery-group	name="my-discovery-group">

						<local-bind-address>172.16.9.7</local-bind-address>

						<group-address>231.7.7.7</group-address>

						<group-port>9876</group-port>

						<refresh-timeout>10000</refresh-timeout>

			</discovery-group>

</discovery-groups>

We'll	consider	each	parameter	of	the	discovery	group:

	name		attribute.	Each	discovery	group	must	have	a	unique	name	per	server.

	local-bind-address	.	If	you	are	running	with	multiple	network	interfaces	on	the	same	machine,	you	may	want	to	specify	that	the
discovery	group	listens	only	only	a	specific	interface.	To	do	this	you	can	specify	the	interface	address	with	this	parameter.	This
parameter	is	optional.	This	is	a	UDP	specific	attribute.

	group-address	.	This	is	the	multicast	IP	address	of	the	group	to	listen	on.	It	should	match	the		group-address		in	the	broadcast
group	that	you	wish	to	listen	from.	This	parameter	is	mandatory.	This	is	a	UDP	specific	attribute.

	group-port	.	This	is	the	UDP	port	of	the	multicast	group.	It	should	match	the		group-port		in	the	broadcast	group	that	you	wish
to	listen	from.	This	parameter	is	mandatory.	This	is	a	UDP	specific	attribute.

	refresh-timeout	.	This	is	the	period	the	discovery	group	waits	after	receiving	the	last	broadcast	from	a	particular	server	before
removing	that	servers	connector	pair	entry	from	its	list.	You	would	normally	set	this	to	a	value	significantly	higher	than	the
	broadcast-period		on	the	broadcast	group	otherwise	servers	might	intermittently	disappear	from	the	list	even	though	they	are	still
broadcasting	due	to	slight	differences	in	timing.	This	parameter	is	optional,	the	default	value	is		10000		milliseconds	(10	seconds).

Here	is	another	example	that	defines	a	JGroups	discovery	group:

<discovery-groups>

Clusters

146

			<discovery-group	name="my-broadcast-group">

						<jgroups-file>test-jgroups-file_ping.xml</jgroups-file>

						<jgroups-channel>activemq_broadcast_channel</jgroups-channel>

						<refresh-timeout>10000</refresh-timeout>

			</discovery-group>

</discovery-groups>

To	receive	broadcast	from	JGroups	channels,	one	must	specify	two	attributes,		jgroups-file		and		jgroups-channel	,	as	discussed	in
details	as	following:

	jgroups-file		attribute.	This	is	the	name	of	JGroups	configuration	file.	It	will	be	used	to	initialize	JGroups	channels.	Make	sure
the	file	is	in	the	java	resource	path	so	that	Apache	ActiveMQ	Artemis	can	load	it.

	jgroups-channel		attribute.	The	name	that	JGroups	channels	connect	to	for	receiving	broadcasts.

Note

The	JGroups	attributes	(jgroups-file		and		jgroups-channel)	and	UDP	specific	attributes	described	above	are	exclusive	of	each
other.	Only	one	set	can	be	specified	in	a	discovery	group	configuration.	Don't	mix	them!

Discovery	Groups	on	the	Client	Side

Let's	discuss	how	to	configure	an	Apache	ActiveMQ	Artemis	client	to	use	discovery	to	discover	a	list	of	servers	to	which	it	can
connect.	The	way	to	do	this	differs	depending	on	whether	you're	using	JMS	or	the	core	API.

Configuring	client	discovery	using	JMS

If	you're	using	JMS	and	you're	using	JNDI	on	the	client	to	look	up	your	JMS	connection	factory	instances	then	you	can	specify	these
parameters	in	the	JNDI	context	environment.	e.g.	in		jndi.properties	.	Simply	ensure	the	host:port	combination	matches	the	group-
address	and	group-port	from	the	corresponding		broadcast-group		on	the	server.	Let's	take	a	look	at	an	example:

java.naming.factory.initial	=	ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=udp://231.7.7.7:9876

The	element		discovery-group-ref		specifies	the	name	of	a	discovery	group	defined	in		broker.xml	.

When	this	connection	factory	is	downloaded	from	JNDI	by	a	client	application	and	JMS	connections	are	created	from	it,	those
connections	will	be	load-balanced	across	the	list	of	servers	that	the	discovery	group	maintains	by	listening	on	the	multicast	address
specified	in	the	discovery	group	configuration.

If	you're	using	JMS,	but	you're	not	using	JNDI	to	lookup	a	connection	factory	-	you're	instantiating	the	JMS	connection	factory
directly	then	you	can	specify	the	discovery	group	parameters	directly	when	creating	the	JMS	connection	factory.	Here's	an	example:

final	String	groupAddress	=	"231.7.7.7";

final	int	groupPort	=	9876;

ConnectionFactory	jmsConnectionFactory	=

ActiveMQJMSClient.createConnectionFactory(new	DiscoveryGroupConfiguration(groupAddress,	groupPort,

																							new	UDPBroadcastGroupConfiguration(groupAddress,	groupPort,	null,	-1)),	JMSFactoryType.CF);

Connection	jmsConnection1	=	jmsConnectionFactory.createConnection();

Connection	jmsConnection2	=	jmsConnectionFactory.createConnection();

The		refresh-timeout		can	be	set	directly	on	the	DiscoveryGroupConfiguration	by	using	the	setter	method
	setDiscoveryRefreshTimeout()		if	you	want	to	change	the	default	value.

There	is	also	a	further	parameter	settable	on	the	DiscoveryGroupConfiguration	using	the	setter	method
	setDiscoveryInitialWaitTimeout()	.	If	the	connection	factory	is	used	immediately	after	creation	then	it	may	not	have	had	enough	time	to
received	broadcasts	from	all	the	nodes	in	the	cluster.	On	first	usage,	the	connection	factory	will	make	sure	it	waits	this	long	since

Clusters

147

creation	before	creating	the	first	connection.	The	default	value	for	this	parameter	is		10000		milliseconds.

Configuring	client	discovery	using	Core

If	you're	using	the	core	API	to	directly	instantiate		ClientSessionFactory		instances,	then	you	can	specify	the	discovery	group
parameters	directly	when	creating	the	session	factory.	Here's	an	example:

final	String	groupAddress	=	"231.7.7.7";

final	int	groupPort	=	9876;

ServerLocator	factory	=	ActiveMQClient.createServerLocatorWithHA(new	DiscoveryGroupConfiguration(groupAddress,	groupPort,

																											new	UDPBroadcastGroupConfiguration(groupAddress,	groupPort,	null,	-1))));

ClientSessionFactory	factory	=	locator.createSessionFactory();

ClientSession	session1	=	factory.createSession();

ClientSession	session2	=	factory.createSession();

The		refresh-timeout		can	be	set	directly	on	the	DiscoveryGroupConfiguration	by	using	the	setter	method
	setDiscoveryRefreshTimeout()		if	you	want	to	change	the	default	value.

There	is	also	a	further	parameter	settable	on	the	DiscoveryGroupConfiguration	using	the	setter	method
	setDiscoveryInitialWaitTimeout()	.	If	the	session	factory	is	used	immediately	after	creation	then	it	may	not	have	had	enough	time	to
received	broadcasts	from	all	the	nodes	in	the	cluster.	On	first	usage,	the	session	factory	will	make	sure	it	waits	this	long	since	creation
before	creating	the	first	session.	The	default	value	for	this	parameter	is		10000		milliseconds.

Discovery	using	static	Connectors

Sometimes	it	may	be	impossible	to	use	UDP	on	the	network	you	are	using.	In	this	case	its	possible	to	configure	a	connection	with	an
initial	list	if	possible	servers.	This	could	be	just	one	server	that	you	know	will	always	be	available	or	a	list	of	servers	where	at	least	one
will	be	available.

This	doesn't	mean	that	you	have	to	know	where	all	your	servers	are	going	to	be	hosted,	you	can	configure	these	servers	to	use	the
reliable	servers	to	connect	to.	Once	they	are	connected	there	connection	details	will	be	propagated	via	the	server	it	connects	to

Configuring	a	Cluster	Connection

For	cluster	connections	there	is	no	extra	configuration	needed,	you	just	need	to	make	sure	that	any	connectors	are	defined	in	the	usual
manner,	(see	Configuring	the	Transport	for	more	information	on	connectors).	These	are	then	referenced	by	the	cluster	connection
configuration.

Configuring	a	Client	Connection

A	static	list	of	possible	servers	can	also	be	used	by	a	normal	client.

Configuring	client	discovery	using	JMS

If	you're	using	JMS	and	you're	using	JNDI	on	the	client	to	look	up	your	JMS	connection	factory	instances	then	you	can	specify	these
parameters	in	the	JNDI	context	environment	in,	e.g.		jndi.properties	:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=(tcp://myhost:61616,tcp://myhost2:61616)

The		connectionFactory.myConnectionFactory		contains	a	list	of	servers	to	use	for	the	connection	factory.	When	this	connection	factory
used	client	application	and	JMS	connections	are	created	from	it,	those	connections	will	be	load-balanced	across	the	list	of	servers
defined	within	the	brackets		()	.	The	brackets	are	expanded	so	the	same	query	cab	be	appended	after	the	last	bracket	for	ease.

If	you're	using	JMS,	but	you're	not	using	JNDI	to	lookup	a	connection	factory	-	you're	instantiating	the	JMS	connection	factory
directly	then	you	can	specify	the	connector	list	directly	when	creating	the	JMS	connection	factory.	Here's	an	example:

HashMap<String,	Object>	map	=	new	HashMap<String,	Object>();

map.put("host",	"myhost");

Clusters

148

map.put("port",	"61616");

TransportConfiguration	server1	=	new	TransportConfiguration(NettyConnectorFactory.class.getName(),	map);

HashMap<String,	Object>	map2	=	new	HashMap<String,	Object>();

map2.put("host",	"myhost2");

map2.put("port",	"61617");

TransportConfiguration	server2	=	new	TransportConfiguration(NettyConnectorFactory.class.getName(),	map2);

ActiveMQConnectionFactory	cf	=	ActiveMQJMSClient.createConnectionFactoryWithHA(JMSFactoryType.CF,	server1,	server2);

Configuring	client	discovery	using	Core

If	you	are	using	the	core	API	then	the	same	can	be	done	as	follows:

HashMap<String,	Object>	map	=	new	HashMap<String,	Object>();

map.put("host",	"myhost");

map.put("port",	"61616");

TransportConfiguration	server1	=	new	TransportConfiguration(NettyConnectorFactory.class.getName(),	map);

HashMap<String,	Object>	map2	=	new	HashMap<String,	Object>();

map2.put("host",	"myhost2");

map2.put("port",	"61617");

TransportConfiguration	server2	=	new	TransportConfiguration(NettyConnectorFactory.class.getName(),	map2);

ServerLocator	locator	=	ActiveMQClient.createServerLocatorWithHA(server1,	server2);

ClientSessionFactory	factory	=	locator.createSessionFactory();

ClientSession	session	=	factory.createSession();

Server-Side	Message	Load	Balancing
If	cluster	connections	are	defined	between	nodes	of	a	cluster,	then	Apache	ActiveMQ	Artemis	will	load	balance	messages	arriving	at	a
particular	node	from	a	client.

Let's	take	a	simple	example	of	a	cluster	of	four	nodes	A,	B,	C,	and	D	arranged	in	a	symmetric	cluster	(described	in	Symmetrical	Clusters
section).	We	have	a	queue	called		OrderQueue		deployed	on	each	node	of	the	cluster.

We	have	client	Ca	connected	to	node	A,	sending	orders	to	the	server.	We	have	also	have	order	processor	clients	Pa,	Pb,	Pc,	and	Pd
connected	to	each	of	the	nodes	A,	B,	C,	D.	If	no	cluster	connection	was	defined	on	node	A,	then	as	order	messages	arrive	on	node	A
they	will	all	end	up	in	the		OrderQueue		on	node	A,	so	will	only	get	consumed	by	the	order	processor	client	attached	to	node	A,	Pa.

If	we	define	a	cluster	connection	on	node	A,	then	as	ordered	messages	arrive	on	node	A	instead	of	all	of	them	going	into	the	local
	OrderQueue		instance,	they	are	distributed	in	a	round-robin	fashion	between	all	the	nodes	of	the	cluster.	The	messages	are	forwarded
from	the	receiving	node	to	other	nodes	of	the	cluster.	This	is	all	done	on	the	server	side,	the	client	maintains	a	single	connection	to	node
A.

For	example,	messages	arriving	on	node	A	might	be	distributed	in	the	following	order	between	the	nodes:	B,	D,	C,	A,	B,	D,	C,	A,	B,	D.
The	exact	order	depends	on	the	order	the	nodes	started	up,	but	the	algorithm	used	is	round	robin.

Apache	ActiveMQ	Artemis	cluster	connections	can	be	configured	to	always	blindly	load	balance	messages	in	a	round	robin	fashion
irrespective	of	whether	there	are	any	matching	consumers	on	other	nodes,	but	they	can	be	a	bit	cleverer	than	that	and	also	be	configured
to	only	distribute	to	other	nodes	if	they	have	matching	consumers.	We'll	look	at	both	these	cases	in	turn	with	some	examples,	but	first
we'll	discuss	configuring	cluster	connections	in	general.

Configuring	Cluster	Connections

Cluster	connections	group	servers	into	clusters	so	that	messages	can	be	load	balanced	between	the	nodes	of	the	cluster.	Let's	take	a	look
at	a	typical	cluster	connection.	Cluster	connections	are	always	defined	in		broker.xml		inside	a		cluster-connection		element.	There	can
be	zero	or	more	cluster	connections	defined	per	Apache	ActiveMQ	Artemis	server.

<cluster-connections>

			<cluster-connection	name="my-cluster">

						<address>jms</address>

						<connector-ref>netty-connector</connector-ref>

Clusters

149

						<check-period>1000</check-period>

						<connection-ttl>5000</connection-ttl>

						<min-large-message-size>50000</min-large-message-size>

						<call-timeout>5000</call-timeout>

						<retry-interval>500</retry-interval>

						<retry-interval-multiplier>1.0</retry-interval-multiplier>

						<max-retry-interval>5000</max-retry-interval>

						<initial-connect-attempts>-1</initial-connect-attempts>

						<reconnect-attempts>-1</reconnect-attempts>

						<use-duplicate-detection>true</use-duplicate-detection>

						<message-load-balancing>ON_DEMAND</message-load-balancing>

						<max-hops>1</max-hops>

						<confirmation-window-size>32000</confirmation-window-size>

						<call-failover-timeout>30000</call-failover-timeout>

						<notification-interval>1000</notification-interval>

						<notification-attempts>2</notification-attempts>

						<discovery-group-ref	discovery-group-name="my-discovery-group"/>

			</cluster-connection>

</cluster-connections>

In	the	above	cluster	connection	all	parameters	have	been	explicitly	specified.	The	following	shows	all	the	available	configuration	options

	address		Each	cluster	connection	only	applies	to	addresses	that	match	the	specified	address	field.	An	address	is	matched	on	the
cluster	connection	when	it	begins	with	the	string	specified	in	this	field.	The	address	field	on	a	cluster	connection	also	supports
comma	separated	lists	and	an	exclude	syntax	'!'.	To	prevent	an	address	from	being	matched	on	this	cluster	connection,	prepend	a
cluster	connection	address	string	with	'!'.

In	the	case	shown	above	the	cluster	connection	will	load	balance	messages	sent	to	addresses	that	start	with		jms	.	This	cluster
connection,	will,	in	effect	apply	to	all	JMS	queues	and	topics	since	they	map	to	core	queues	that	start	with	the	substring	"jms".

The	address	can	be	any	value	and	you	can	have	many	cluster	connections	with	different	values	of		address	,	simultaneously
balancing	messages	for	those	addresses,	potentially	to	different	clusters	of	servers.	By	having	multiple	cluster	connections	on
different	addresses	a	single	Apache	ActiveMQ	Artemis	Server	can	effectively	take	part	in	multiple	clusters	simultaneously.

Be	careful	not	to	have	multiple	cluster	connections	with	overlapping	values	of		address	,	e.g.	"europe"	and	"europe.news"	since
this	could	result	in	the	same	messages	being	distributed	between	more	than	one	cluster	connection,	possibly	resulting	in	duplicate
deliveries.

Examples:

'jms.eu'	matches	all	addresses	starting	with	'jms.eu'
'!jms.eu'	matches	all	address	except	for	those	starting	with	'jms.eu'
'jms.eu.uk,jms.eu.de'	matches	all	addresses	starting	with	either	'jms.eu.uk'	or	'jms.eu.de'
'jms.eu,!jms.eu.uk'	matches	all	addresses	starting	with	'jms.eu'	but	not	those	starting	with	'jms.eu.uk'

Notes:

Address	exclusion	will	always	takes	precedence	over	address	inclusion.
Address	matching	on	cluster	connections	does	not	support	wild-card	matching.

This	parameter	is	mandatory.

	connector-ref	.	This	is	the	connector	which	will	be	sent	to	other	nodes	in	the	cluster	so	they	have	the	correct	cluster	topology.

This	parameter	is	mandatory.

	check-period	.	The	period	(in	milliseconds)	used	to	check	if	the	cluster	connection	has	failed	to	receive	pings	from	another	server.
Default	is	30000.

	connection-ttl	.	This	is	how	long	a	cluster	connection	should	stay	alive	if	it	stops	receiving	messages	from	a	specific	node	in	the
cluster.	Default	is	60000.

	min-large-message-size	.	If	the	message	size	(in	bytes)	is	larger	than	this	value	then	it	will	be	split	into	multiple	segments	when
sent	over	the	network	to	other	cluster	members.	Default	is	102400.

Clusters

150

	call-timeout	.	When	a	packet	is	sent	via	a	cluster	connection	and	is	a	blocking	call,	i.e.	for	acknowledgements,	this	is	how	long	it
will	wait	(in	milliseconds)	for	the	reply	before	throwing	an	exception.	Default	is	30000.

	retry-interval	.	We	mentioned	before	that,	internally,	cluster	connections	cause	bridges	to	be	created	between	the	nodes	of	the
cluster.	If	the	cluster	connection	is	created	and	the	target	node	has	not	been	started,	or	say,	is	being	rebooted,	then	the	cluster
connections	from	other	nodes	will	retry	connecting	to	the	target	until	it	comes	back	up,	in	the	same	way	as	a	bridge	does.

This	parameter	determines	the	interval	in	milliseconds	between	retry	attempts.	It	has	the	same	meaning	as	the		retry-interval		on
a	bridge	(as	described	in	Core	Bridges).

This	parameter	is	optional	and	its	default	value	is		500		milliseconds.

	retry-interval-multiplier	.	This	is	a	multiplier	used	to	increase	the		retry-interval		after	each	reconnect	attempt,	default	is	1.

	max-retry-interval	.	The	maximum	delay	(in	milliseconds)	for	retries.	Default	is	2000.

	initial-connect-attempts	.	The	number	of	times	the	system	will	try	to	connect	a	node	in	the	cluster	initially.	If	the	max-retry	is
achieved	this	node	will	be	considered	permanently	down	and	the	system	will	not	route	messages	to	this	node.	Default	is	-1	(infinite
retries).

	reconnect-attempts	.	The	number	of	times	the	system	will	try	to	reconnect	to	a	node	in	the	cluster.	If	the	max-retry	is	achieved
this	node	will	be	considered	permanently	down	and	the	system	will	stop	routing	messages	to	this	node.	Default	is	-1	(infinite
retries).

	use-duplicate-detection	.	Internally	cluster	connections	use	bridges	to	link	the	nodes,	and	bridges	can	be	configured	to	add	a
duplicate	id	property	in	each	message	that	is	forwarded.	If	the	target	node	of	the	bridge	crashes	and	then	recovers,	messages	might
be	resent	from	the	source	node.	By	enabling	duplicate	detection	any	duplicate	messages	will	be	filtered	out	and	ignored	on	receipt	at
the	target	node.

This	parameter	has	the	same	meaning	as		use-duplicate-detection		on	a	bridge.	For	more	information	on	duplicate	detection,	please
see	Duplicate	Detection.	Default	is	true.

	message-load-balancing	.	This	parameter	determines	if/how	messages	will	be	distributed	between	other	nodes	of	the	cluster.	It	can
be	one	of	three	values	-		OFF	,		STRICT	,	or		ON_DEMAND		(default).	This	parameter	replaces	the	deprecated		forward-when-no-
consumers		parameter.

If	this	is	set	to		OFF		then	messages	will	never	be	forwarded	to	another	node	in	the	cluster

If	this	is	set	to		STRICT		then	each	incoming	message	will	be	round	robin'd	even	though	the	same	queues	on	the	other	nodes	of	the
cluster	may	have	no	consumers	at	all,	or	they	may	have	consumers	that	have	non	matching	message	filters	(selectors).	Note	that
Apache	ActiveMQ	Artemis	will	not	forward	messages	to	other	nodes	if	there	are	no	queues	of	the	same	name	on	the	other	nodes,
even	if	this	parameter	is	set	to		STRICT	.	Using		STRICT		is	like	setting	the	legacy		forward-when-no-consumers		parameter	to		true	.

If	this	is	set	to		ON_DEMAND		then	Apache	ActiveMQ	Artemis	will	only	forward	messages	to	other	nodes	of	the	cluster	if	the	address
to	which	they	are	being	forwarded	has	queues	which	have	consumers,	and	if	those	consumers	have	message	filters	(selectors)	at
least	one	of	those	selectors	must	match	the	message.	Using		ON_DEMAND		is	like	setting	the	legacy		forward-when-no-consumers	
parameter	to		false	.

Default	is		ON_DEMAND	.

	max-hops	.	When	a	cluster	connection	decides	the	set	of	nodes	to	which	it	might	load	balance	a	message,	those	nodes	do	not	have	to
be	directly	connected	to	it	via	a	cluster	connection.	Apache	ActiveMQ	Artemis	can	be	configured	to	also	load	balance	messages	to
nodes	which	might	be	connected	to	it	only	indirectly	with	other	Apache	ActiveMQ	Artemis	servers	as	intermediates	in	a	chain.

This	allows	Apache	ActiveMQ	Artemis	to	be	configured	in	more	complex	topologies	and	still	provide	message	load	balancing.	We'll
discuss	this	more	later	in	this	chapter.

The	default	value	for	this	parameter	is		1	,	which	means	messages	are	only	load	balanced	to	other	Apache	ActiveMQ	Artemis
serves	which	are	directly	connected	to	this	server.	This	parameter	is	optional.

Clusters

151

	confirmation-window-size	.	The	size	(in	bytes)	of	the	window	used	for	sending	confirmations	from	the	server	connected	to.	So
once	the	server	has	received		confirmation-window-size		bytes	it	notifies	its	client,	default	is	1048576.	A	value	of	-1	means	no
window.

	producer-window-size	.	The	size	for	producer	flow	control	over	cluster	connection.	it's	by	default	disabled	through	the	cluster
connection	bridge	but	you	may	want	to	set	a	value	if	you	are	using	really	large	messages	in	cluster.	A	value	of	-1	means	no	window.

	call-failover-timeout	.	Similar	to		call-timeout		but	used	when	a	call	is	made	during	a	failover	attempt.	Default	is	-1	(no
timeout).

	notification-interval	.	How	often	(in	milliseconds)	the	cluster	connection	should	broadcast	itself	when	attaching	to	the	cluster.
Default	is	1000.

	notification-attempts	.	How	many	times	the	cluster	connection	should	broadcast	itself	when	connecting	to	the	cluster.	Default	is
2.

	discovery-group-ref	.	This	parameter	determines	which	discovery	group	is	used	to	obtain	the	list	of	other	servers	in	the	cluster
that	this	cluster	connection	will	make	connections	to.

Alternatively	if	you	would	like	your	cluster	connections	to	use	a	static	list	of	servers	for	discovery	then	you	can	do	it	like	this.

<cluster-connection	name="my-cluster">

			...

			<static-connectors>

						<connector-ref>server0-connector</connector-ref>

						<connector-ref>server1-connector</connector-ref>

			</static-connectors>

</cluster-connection>

Here	we	have	defined	2	servers	that	we	know	for	sure	will	that	at	least	one	will	be	available.	There	may	be	many	more	servers	in	the
cluster	but	these	will;	be	discovered	via	one	of	these	connectors	once	an	initial	connection	has	been	made.

Cluster	User	Credentials

When	creating	connections	between	nodes	of	a	cluster	to	form	a	cluster	connection,	Apache	ActiveMQ	Artemis	uses	a	cluster	user	and
cluster	password	which	is	defined	in		broker.xml	:

<cluster-user>ACTIVEMQ.CLUSTER.ADMIN.USER</cluster-user>

<cluster-password>CHANGE	ME!!</cluster-password>

Warning

It	is	imperative	that	these	values	are	changed	from	their	default,	or	remote	clients	will	be	able	to	make	connections	to	the	server
using	the	default	values.	If	they	are	not	changed	from	the	default,	Apache	ActiveMQ	Artemis	will	detect	this	and	pester	you
with	a	warning	on	every	start-up.

Client-Side	Load	balancing

With	Apache	ActiveMQ	Artemis	client-side	load	balancing,	subsequent	sessions	created	using	a	single	session	factory	can	be	connected
to	different	nodes	of	the	cluster.	This	allows	sessions	to	spread	smoothly	across	the	nodes	of	a	cluster	and	not	be	"clumped"	on	any
particular	node.

The	load	balancing	policy	to	be	used	by	the	client	factory	is	configurable.	Apache	ActiveMQ	Artemis	provides	four	out-of-the-box	load
balancing	policies,	and	you	can	also	implement	your	own	and	use	that.

The	out-of-the-box	policies	are

Round	Robin.	With	this	policy	the	first	node	is	chosen	randomly	then	each	subsequent	node	is	chosen	sequentially	in	the	same
order.

Clusters

152

For	example	nodes	might	be	chosen	in	the	order	B,	C,	D,	A,	B,	C,	D,	A,	B	or	D,	A,	B,	C,	D,	A,	B,	C,	D	or	C,	D,	A,	B,	C,	D,	A,	B,
C.

Use		org.apache.activemq.artemis.api.core.client.loadbalance.RoundRobinConnectionLoadBalancingPolicy		as	the		<connection-load-
balancing-policy-class-name>	.

Random.	With	this	policy	each	node	is	chosen	randomly.

Use		org.apache.activemq.artemis.api.core.client.loadbalance.RandomConnectionLoadBalancingPolicy		as	the		<connection-load-
balancing-policy-class-name>	.

Random	Sticky.	With	this	policy	the	first	node	is	chosen	randomly	and	then	re-used	for	subsequent	connections.

Use		org.apache.activemq.artemis.api.core.client.loadbalance.RandomStickyConnectionLoadBalancingPolicy		as	the		<connection-
load-balancing-policy-class-name>	.

First	Element.	With	this	policy	the	"first"	(i.e.	0th)	node	is	always	returned.

Use		org.apache.activemq.artemis.api.core.client.loadbalance.FirstElementConnectionLoadBalancingPolicy		as	the		<connection-
load-balancing-policy-class-name>	.

You	can	also	implement	your	own	policy	by	implementing	the	interface
	org.apache.activemq.artemis.api.core.client.loadbalance.ConnectionLoadBalancingPolicy	

Specifying	which	load	balancing	policy	to	use	differs	whether	you	are	using	JMS	or	the	core	API.	If	you	don't	specify	a	policy	then	the
default	will	be	used	which	is		org.apache.activemq.artemis.api.core.client.loadbalance.RoundRobinConnectionLoadBalancingPolicy	.

If	you're	using	JMS	and	you're	using	JNDI	on	the	client	to	look	up	your	JMS	connection	factory	instances	then	you	can	specify	these
parameters	in	the	JNDI	context	environment	in,	e.g.		jndi.properties	,	to	specify	the	load	balancing	policy	directly:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connection.myConnectionFactory=tcp://localhost:61616?loadBalancingPolicyClassName=org.apache.activemq.artemis.api.core.client.

loadbalance.RandomConnectionLoadBalancingPolicy

The	above	example	would	instantiate	a	JMS	connection	factory	that	uses	the	random	connection	load	balancing	policy.

If	you're	using	JMS	but	you're	instantiating	your	connection	factory	directly	on	the	client	side	then	you	can	set	the	load	balancing
policy	using	the	setter	on	the		ActiveMQConnectionFactory		before	using	it:

ConnectionFactory	jmsConnectionFactory	=	ActiveMQJMSClient.createConnectionFactory(...);

jmsConnectionFactory.setLoadBalancingPolicyClassName("com.acme.MyLoadBalancingPolicy");

If	you're	using	the	core	API,	you	can	set	the	load	balancing	policy	directly	on	the		ServerLocator		instance	you	are	using:

ServerLocator	locator	=	ActiveMQClient.createServerLocatorWithHA(server1,	server2);

locator.setLoadBalancingPolicyClassName("com.acme.MyLoadBalancingPolicy");

The	set	of	servers	over	which	the	factory	load	balances	can	be	determined	in	one	of	two	ways:

Specifying	servers	explicitly

Using	discovery.

Specifying	Members	of	a	Cluster	Explicitly

Sometimes	you	want	to	explicitly	define	a	cluster	more	explicitly,	that	is	control	which	server	connect	to	each	other	in	the	cluster.	This
is	typically	used	to	form	non	symmetrical	clusters	such	as	chain	cluster	or	ring	clusters.	This	can	only	be	done	using	a	static	list	of
connectors	and	is	configured	as	follows:

<cluster-connection	name="my-cluster">

Clusters

153

			<address>jms</address>

			<connector-ref>netty-connector</connector-ref>

			<retry-interval>500</retry-interval>

			<use-duplicate-detection>true</use-duplicate-detection>

			<message-load-balancing>STRICT</message-load-balancing>

			<max-hops>1</max-hops>

			<static-connectors	allow-direct-connections-only="true">

						<connector-ref>server1-connector</connector-ref>

			</static-connectors>

</cluster-connection>

In	this	example	we	have	set	the	attribute		allow-direct-connections-only		which	means	that	the	only	server	that	this	server	can	create	a
cluster	connection	to	is	server1-connector.	This	means	you	can	explicitly	create	any	cluster	topology	you	want.

Message	Redistribution

Another	important	part	of	clustering	is	message	redistribution.	Earlier	we	learned	how	server	side	message	load	balancing	round	robins
messages	across	the	cluster.	If		message-load-balancing		is		OFF		or		ON_DEMAND		then	messages	won't	be	forwarded	to	nodes	which	don't
have	matching	consumers.	This	is	great	and	ensures	that	messages	aren't	moved	to	a	queue	which	has	no	consumers	to	consume	them.
However,	there	is	a	situation	it	doesn't	solve:	What	happens	if	the	consumers	on	a	queue	close	after	the	messages	have	been	sent	to	the
node?	If	there	are	no	consumers	on	the	queue	the	message	won't	get	consumed	and	we	have	a	starvation	situation.

This	is	where	message	redistribution	comes	in.	With	message	redistribution	Apache	ActiveMQ	Artemis	can	be	configured	to
automatically	redistribute	messages	from	queues	which	have	no	consumers	back	to	other	nodes	in	the	cluster	which	do	have	matching
consumers.	To	enable	this	functionality		message-load-balancing		must	be		ON_DEMAND	.

Message	redistribution	can	be	configured	to	kick	in	immediately	after	the	last	consumer	on	a	queue	is	closed,	or	to	wait	a	configurable
delay	after	the	last	consumer	on	a	queue	is	closed	before	redistributing.	By	default	message	redistribution	is	disabled.

Message	redistribution	can	be	configured	on	a	per	address	basis,	by	specifying	the	redistribution	delay	in	the	address	settings,	for	more
information	on	configuring	address	settings,	please	see	Queue	Attributes.

Here's	an	address	settings	snippet	from		broker.xml		showing	how	message	redistribution	is	enabled	for	a	set	of	queues:

<address-settings>

			<address-setting	match="jms.#">

						<redistribution-delay>0</redistribution-delay>

			</address-setting>

</address-settings>

The	above		address-settings		block	would	set	a		redistribution-delay		of		0		for	any	queue	which	is	bound	to	an	address	that	starts
with	"jms.".	All	JMS	queues	and	topic	subscriptions	are	bound	to	addresses	that	start	with	"jms.",	so	the	above	would	enable	instant
(no	delay)	redistribution	for	all	JMS	queues	and	topic	subscriptions.

The	attribute		match		can	be	an	exact	match	or	it	can	be	a	string	that	conforms	to	the	Apache	ActiveMQ	Artemis	wildcard	syntax
(described	in	Wildcard	Syntax).

The	element		redistribution-delay		defines	the	delay	in	milliseconds	after	the	last	consumer	is	closed	on	a	queue	before	redistributing
messages	from	that	queue	to	other	nodes	of	the	cluster	which	do	have	matching	consumers.	A	delay	of	zero	means	the	messages	will	be
immediately	redistributed.	A	value	of		-1		signifies	that	messages	will	never	be	redistributed.	The	default	value	is		-1	.

It	often	makes	sense	to	introduce	a	delay	before	redistributing	as	it's	a	common	case	that	a	consumer	closes	but	another	one	quickly	is
created	on	the	same	queue,	in	such	a	case	you	probably	don't	want	to	redistribute	immediately	since	the	new	consumer	will	arrive
shortly.

Cluster	topologies

Clusters

154

Apache	ActiveMQ	Artemis	clusters	can	be	connected	together	in	many	different	topologies,	let's	consider	the	two	most	common	ones
here

Symmetric	cluster

A	symmetric	cluster	is	probably	the	most	common	cluster	topology.

With	a	symmetric	cluster	every	node	in	the	cluster	is	connected	to	every	other	node	in	the	cluster.	In	other	words	every	node	in	the
cluster	is	no	more	than	one	hop	away	from	every	other	node.

To	form	a	symmetric	cluster	every	node	in	the	cluster	defines	a	cluster	connection	with	the	attribute		max-hops		set	to		1	.	Typically	the
cluster	connection	will	use	server	discovery	in	order	to	know	what	other	servers	in	the	cluster	it	should	connect	to,	although	it	is
possible	to	explicitly	define	each	target	server	too	in	the	cluster	connection	if,	for	example,	UDP	is	not	available	on	your	network.

With	a	symmetric	cluster	each	node	knows	about	all	the	queues	that	exist	on	all	the	other	nodes	and	what	consumers	they	have.	With
this	knowledge	it	can	determine	how	to	load	balance	and	redistribute	messages	around	the	nodes.

Don't	forget	this	warning	when	creating	a	symmetric	cluster.

Chain	cluster

With	a	chain	cluster,	each	node	in	the	cluster	is	not	connected	to	every	node	in	the	cluster	directly,	instead	the	nodes	form	a	chain	with	a
node	on	each	end	of	the	chain	and	all	other	nodes	just	connecting	to	the	previous	and	next	nodes	in	the	chain.

An	example	of	this	would	be	a	three	node	chain	consisting	of	nodes	A,	B	and	C.	Node	A	is	hosted	in	one	network	and	has	many
producer	clients	connected	to	it	sending	order	messages.	Due	to	corporate	policy,	the	order	consumer	clients	need	to	be	hosted	in	a
different	network,	and	that	network	is	only	accessible	via	a	third	network.	In	this	setup	node	B	acts	as	a	mediator	with	no	producers	or
consumers	on	it.	Any	messages	arriving	on	node	A	will	be	forwarded	to	node	B,	which	will	in	turn	forward	them	to	node	C	where	they
can	get	consumed.	Node	A	does	not	need	to	directly	connect	to	C,	but	all	the	nodes	can	still	act	as	a	part	of	the	cluster.

To	set	up	a	cluster	in	this	way,	node	A	would	define	a	cluster	connection	that	connects	to	node	B,	and	node	B	would	define	a	cluster
connection	that	connects	to	node	C.	In	this	case	we	only	want	cluster	connections	in	one	direction	since	we're	only	moving	messages
from	node	A->B->C	and	never	from	C->B->A.

For	this	topology	we	would	set		max-hops		to		2	.	With	a	value	of		2		the	knowledge	of	what	queues	and	consumers	that	exist	on	node	C
would	be	propagated	from	node	C	to	node	B	to	node	A.	Node	A	would	then	know	to	distribute	messages	to	node	B	when	they	arrive,
even	though	node	B	has	no	consumers	itself,	it	would	know	that	a	further	hop	away	is	node	C	which	does	have	consumers.

Scaling	Down

Apache	ActiveMQ	Artemis	supports	scaling	down	a	cluster	with	no	message	loss	(even	for	non-durable	messages).	This	is	especially
useful	in	certain	environments	(e.g.	the	cloud)	where	the	size	of	a	cluster	may	change	relatively	frequently.	When	scaling	up	a	cluster	(i.e.
adding	nodes)	there	is	no	risk	of	message	loss,	but	when	scaling	down	a	cluster	(i.e.	removing	nodes)	the	messages	on	those	nodes	would
be	lost	unless	the	broker	sent	them	to	another	node	in	the	cluster.	Apache	ActiveMQ	Artemis	can	be	configured	to	do	just	that.

The	simplest	way	to	enable	this	behavior	is	to	set		scale-down		to		true	.	If	the	server	is	clustered	and		scale-down		is		true		then	when
the	server	is	shutdown	gracefully	(i.e.	stopped	without	crashing)	it	will	find	another	node	in	the	cluster	and	send	all	of	its	messages
(both	durable	and	non-durable)	to	that	node.	The	messages	are	processed	in	order	and	go	to	the	back	of	the	respective	queues	on	the
other	node	(just	as	if	the	messages	were	sent	from	an	external	client	for	the	first	time).

If	more	control	over	where	the	messages	go	is	required	then	specify		scale-down-group-name	.	Messages	will	only	be	sent	to	another	node
in	the	cluster	that	uses	the	same		scale-down-group-name		as	the	server	being	shutdown.

Warning

If	cluster	nodes	are	grouped	together	with	different		scale-down-group-name		values	beware.	If	all	the	nodes	in	a	single	group	are
shut	down	then	the	messages	from	that	node/group	will	be	lost.

Clusters

155

If	the	server	is	using	multiple		cluster-connection		then	use		scale-down-clustername		to	identify	the	name	of	the		cluster-connection	
which	should	be	used	for	scaling	down.

Clusters

156

High	Availability	and	Failover
We	define	high	availability	as	the	ability	for	the	system	to	continue	functioning	after	failure	of	one	or	more	of	the	servers.

A	part	of	high	availability	is	failover	which	we	define	as	the	ability	for	client	connections	to	migrate	from	one	server	to	another	in	event
of	server	failure	so	client	applications	can	continue	to	operate.

Live	-	Backup	Groups

Apache	ActiveMQ	Artemis	allows	servers	to	be	linked	together	as	live	-	backup	groups	where	each	live	server	can	have	1	or	more
backup	servers.	A	backup	server	is	owned	by	only	one	live	server.	Backup	servers	are	not	operational	until	failover	occurs,	however	1
chosen	backup,	which	will	be	in	passive	mode,	announces	its	status	and	waits	to	take	over	the	live	servers	work

Before	failover,	only	the	live	server	is	serving	the	Apache	ActiveMQ	Artemis	clients	while	the	backup	servers	remain	passive	or
awaiting	to	become	a	backup	server.	When	a	live	server	crashes	or	is	brought	down	in	the	correct	mode,	the	backup	server	currently	in
passive	mode	will	become	live	and	another	backup	server	will	become	passive.	If	a	live	server	restarts	after	a	failover	then	it	will	have
priority	and	be	the	next	server	to	become	live	when	the	current	live	server	goes	down,	if	the	current	live	server	is	configured	to	allow
automatic	failback	then	it	will	detect	the	live	server	coming	back	up	and	automatically	stop.

HA	Policies

Apache	ActiveMQ	Artemis	supports	two	different	strategies	for	backing	up	a	server	shared	store	and	replication.	Which	is	configured
via	the		ha-policy		configuration	element.

<ha-policy>

		<replication/>

</ha-policy>

or

<ha-policy>

			<shared-store/>

</ha-policy>

As	well	as	these	2	strategies	there	is	also	a	3rd	called		live-only	.	This	of	course	means	there	will	be	no	Backup	Strategy	and	is	the
default	if	none	is	provided,	however	this	is	used	to	configure		scale-down		which	we	will	cover	in	a	later	chapter.

Note

The		ha-policy		configurations	replaces	any	current	HA	configuration	in	the	root	of	the		broker.xml		configuration.	All	old
configuration	is	now	deprecated	although	best	efforts	will	be	made	to	honour	it	if	configured	this	way.

Note

Only	persistent	message	data	will	survive	failover.	Any	non	persistent	message	data	will	not	be	available	after	failover.

The		ha-policy		type	configures	which	strategy	a	cluster	should	use	to	provide	the	backing	up	of	a	servers	data.	Within	this
configuration	element	is	configured	how	a	server	should	behave	within	the	cluster,	either	as	a	master	(live),	slave	(backup)	or	colocated
(both	live	and	backup).	This	would	look	something	like:

<ha-policy>

			<replication>

						<master/>

			</replication>

</ha-policy>

High	Availability	and	Failover

157

or

<ha-policy>

			<shared-store/>

						<slave/>

			</shared-store/>

</ha-policy>

or

<ha-policy>

			<replication>

						<colocated/>

			</replication>

</ha-policy>

Data	Replication

Support	for	network-based	data	replication	was	added	in	version	2.3.

When	using	replication,	the	live	and	the	backup	servers	do	not	share	the	same	data	directories,	all	data	synchronization	is	done	over	the
network.	Therefore	all	(persistent)	data	received	by	the	live	server	will	be	duplicated	to	the	backup.

Notice	that	upon	start-up	the	backup	server	will	first	need	to	synchronize	all	existing	data	from	the	live	server	before	becoming	capable
of	replacing	the	live	server	should	it	fail.	So	unlike	when	using	shared	storage,	a	replicating	backup	will	not	be	a	fully	operational	backup
right	after	start-up,	but	only	after	it	finishes	synchronizing	the	data	with	its	live	server.	The	time	it	will	take	for	this	to	happen	will
depend	on	the	amount	of	data	to	be	synchronized	and	the	connection	speed.

Note

In	general,	synchronization	occurs	in	parallel	with	current	network	traffic	so	this	won't	cause	any	blocking	on	current	clients.
However,	there	is	a	critical	moment	at	the	end	of	this	process	where	the	replicating	server	must	complete	the	synchronization
and	ensure	the	replica	acknowledges	this	completion.	This	exchange	between	the	replicating	server	and	replica	will	block	any
journal	related	operations.	The	maximum	length	of	time	that	this	exchange	will	block	is	controlled	by	the		initial-replication-
sync-timeout		configuration	element.

Replication	will	create	a	copy	of	the	data	at	the	backup.	One	issue	to	be	aware	of	is:	in	case	of	a	successful	fail-over,	the	backup's	data
will	be	newer	than	the	one	at	the	live's	storage.	If	you	configure	your	live	server	to	perform	a	failback	to	live	server	when	restarted,	it
will	synchronize	its	data	with	the	backup's.	If	both	servers	are	shutdown,	the	administrator	will	have	to	determine	which	one	has	the
latest	data.

The	replicating	live	and	backup	pair	must	be	part	of	a	cluster.	The	Cluster	Connection	also	defines	how	backup	servers	will	find	the
remote	live	servers	to	pair	with.	Refer	to	Clusters	for	details	on	how	this	is	done,	and	how	to	configure	a	cluster	connection.	Notice	that:

Both	live	and	backup	servers	must	be	part	of	the	same	cluster.	Notice	that	even	a	simple	live/backup	replicating	pair	will	require	a
cluster	configuration.

Their	cluster	user	and	password	must	match.

Within	a	cluster,	there	are	two	ways	that	a	backup	server	will	locate	a	live	server	to	replicate	from,	these	are:

	specifying	a	node	group	.	You	can	specify	a	group	of	live	servers	that	a	backup	server	can	connect	to.	This	is	done	by	configuring
	group-name		in	either	the		master		or	the		slave		element	of	the		broker.xml	.	A	Backup	server	will	only	connect	to	a	live	server
that	shares	the	same	node	group	name

	connecting	to	any	live	.	This	will	be	the	behaviour	if		group-name		is	not	configured	allowing	a	backup	server	to	connect	to	any
live	server

Note

A		group-name		example:	suppose	you	have	5	live	servers	and	6	backup	servers:

High	Availability	and	Failover

158

	live1	,		live2	,		live3	:	with		group-name=fish	

	live4	,		live5	:	with		group-name=bird	

	backup1	,		backup2	,		backup3	,		backup4	:	with		group-name=fish	

	backup5	,		backup6	:	with		group-name=bird	

After	joining	the	cluster	the	backups	with		group-name=fish		will	search	for	live	servers	with		group-name=fish		to	pair	with.	Since
there	is	one	backup	too	many,	the		fish		will	remain	with	one	spare	backup.

The	2	backups	with		group-name=bird		(backup5		and		backup6)	will	pair	with	live	servers		live4		and		live5	.

The	backup	will	search	for	any	live	server	that	it	is	configured	to	connect	to.	It	then	tries	to	replicate	with	each	live	server	in	turn	until	it
finds	a	live	server	that	has	no	current	backup	configured.	If	no	live	server	is	available	it	will	wait	until	the	cluster	topology	changes	and
repeats	the	process.

Note

This	is	an	important	distinction	from	a	shared-store	backup,	if	a	backup	starts	and	does	not	find	a	live	server,	the	server	will	just
activate	and	start	to	serve	client	requests.	In	the	replication	case,	the	backup	just	keeps	waiting	for	a	live	server	to	pair	with.
Note	that	in	replication	the	backup	server	does	not	know	whether	any	data	it	might	have	is	up	to	date,	so	it	really	cannot	decide
to	activate	automatically.	To	activate	a	replicating	backup	server	using	the	data	it	has,	the	administrator	must	change	its
configuration	to	make	it	a	live	server	by	changing		slave		to		master	.

Much	like	in	the	shared-store	case,	when	the	live	server	stops	or	crashes,	its	replicating	backup	will	become	active	and	take	over	its
duties.	Specifically,	the	backup	will	become	active	when	it	loses	connection	to	its	live	server.	This	can	be	problematic	because	this	can
also	happen	because	of	a	temporary	network	problem.	In	order	to	address	this	issue,	the	backup	will	try	to	determine	whether	it	still
can	connect	to	the	other	servers	in	the	cluster.	If	it	can	connect	to	more	than	half	the	servers,	it	will	become	active,	if	more	than	half	the
servers	also	disappeared	with	the	live,	the	backup	will	wait	and	try	reconnecting	with	the	live.	This	avoids	a	split	brain	situation.

Configuration

To	configure	the	live	and	backup	servers	to	be	a	replicating	pair,	configure	the	live	server	in	'		broker.xml		to	have:

<ha-policy>

			<replication>

						<master/>

			</replication>

</ha-policy>

.

<cluster-connections>

			<cluster-connection	name="my-cluster">

						...

			</cluster-connection>

</cluster-connections>

The	backup	server	must	be	similarly	configured	but	as	a		slave	

<ha-policy>

			<replication>

						<slave/>

			</replication>

</ha-policy>

All	Replication	Configuration

The	following	table	lists	all	the		ha-policy		configuration	elements	for	HA	strategy	Replication	for		master	:

Name Description

`check-for- Whether	to	check	the	cluster	for	a	(live)	server	using	our	own	server	ID	when	starting	up.	This	option	is	only

High	Availability	and	Failover

159

live-server` necessary	for	performing	'fail-back'	on	replicating	servers.

`cluster-
name`

Name	of	the	cluster	configuration	to	use	for	replication.	This	setting	is	only	necessary	if	you	configure	multiple
cluster	connections.	If	configured	then	the	connector	configuration	of	the	cluster	configuration	with	this	name	will
be	used	when	connecting	to	the	cluster	to	discover	if	a	live	server	is	already	running,	see	`check-for-live-server`.	If
unset	then	the	default	cluster	connections	configuration	is	used	(the	first	one	configured).

`group-
name` If	set,	backup	servers	will	only	pair	with	live	servers	with	matching	group-name.

`initial-
replication-
sync-
timeout`

The	amount	of	time	the	replicating	server	will	wait	at	the	completion	of	the	initial	replication	process	for	the
replica	to	acknowledge	it	has	received	all	the	necessary	data.	The	default	is	30,000	milliseconds.	Note:	during	this
interval	any	journal	related	operations	will	be	blocked.

The	following	table	lists	all	the		ha-policy		configuration	elements	for	HA	strategy	Replication	for		slave	:

Name Description

`cluster-
name`

Name	of	the	cluster	configuration	to	use	for	replication.	This	setting	is	only	necessary	if	you	configure	multiple
cluster	connections.	If	configured	then	the	connector	configuration	of	the	cluster	configuration	with	this	name	will
be	used	when	connecting	to	the	cluster	to	discover	if	a	live	server	is	already	running,	see	`check-for-live-server`.	If
unset	then	the	default	cluster	connections	configuration	is	used	(the	first	one	configured)

`group-
name` If	set,	backup	servers	will	only	pair	with	live	servers	with	matching	group-name

`max-
saved-
replicated-
journals-
size`

This	specifies	how	many	times	a	replicated	backup	server	can	restart	after	moving	its	files	on	start.	Once	there
are	this	number	of	backup	journal	files	the	server	will	stop	permanently	after	if	fails	back.

`allow-
failback`

Whether	a	server	will	automatically	stop	when	a	another	places	a	request	to	take	over	its	place.	The	use	case	is
when	the	backup	has	failed	over

`initial-
replication-
sync-
timeout`

After	failover	and	the	slave	has	become	live,	this	is	set	on	the	new	live	server.	It	represents	the	amount	of	time
the	replicating	server	will	wait	at	the	completion	of	the	initial	replication	process	for	the	replica	to	acknowledge	it
has	received	all	the	necessary	data.	The	default	is	30,000	milliseconds.	Note:	during	this	interval	any	journal
related	operations	will	be	blocked.

Shared	Store

When	using	a	shared	store,	both	live	and	backup	servers	share	the	same	entire	data	directory	using	a	shared	file	system.	This	means	the
paging	directory,	journal	directory,	large	messages	and	binding	journal.

When	failover	occurs	and	a	backup	server	takes	over,	it	will	load	the	persistent	storage	from	the	shared	file	system	and	clients	can
connect	to	it.

This	style	of	high	availability	differs	from	data	replication	in	that	it	requires	a	shared	file	system	which	is	accessible	by	both	the	live	and
backup	nodes.	Typically	this	will	be	some	kind	of	high	performance	Storage	Area	Network	(SAN).	We	do	not	recommend	you	use
Network	Attached	Storage	(NAS),	e.g.	NFS	mounts	to	store	any	shared	journal	(NFS	is	slow).

The	advantage	of	shared-store	high	availability	is	that	no	replication	occurs	between	the	live	and	backup	nodes,	this	means	it	does	not
suffer	any	performance	penalties	due	to	the	overhead	of	replication	during	normal	operation.

The	disadvantage	of	shared	store	replication	is	that	it	requires	a	shared	file	system,	and	when	the	backup	server	activates	it	needs	to	load
the	journal	from	the	shared	store	which	can	take	some	time	depending	on	the	amount	of	data	in	the	store.

If	you	require	the	highest	performance	during	normal	operation,	have	access	to	a	fast	SAN	and	live	with	a	slightly	slower	failover
(depending	on	amount	of	data).

High	Availability	and	Failover

160

Configuration

To	configure	the	live	and	backup	servers	to	share	their	store,	configure	id	via	the		ha-policy		configuration	in		broker.xml	:

<ha-policy>

			<shared-store>

						<master/>

			</shared-store>

</ha-policy>

.

<cluster-connections>

			<cluster-connection	name="my-cluster">

...

			</cluster-connection>

</cluster-connections>

The	backup	server	must	also	be	configured	as	a	backup.

<ha-policy>

			<shared-store>

						<slave/>

			</shared-store>

</ha-policy>

In	order	for	live	-	backup	groups	to	operate	properly	with	a	shared	store,	both	servers	must	have	configured	the	location	of	journal
directory	to	point	to	the	same	shared	location	(as	explained	in	Configuring	the	message	journal)

Note

todo	write	something	about	GFS

Also	each	node,	live	and	backups,	will	need	to	have	a	cluster	connection	defined	even	if	not	part	of	a	cluster.	The	Cluster	Connection
info	defines	how	backup	servers	announce	there	presence	to	its	live	server	or	any	other	nodes	in	the	cluster.	Refer	to	Clusters	for	details
on	how	this	is	done.

Failing	Back	to	live	Server

After	a	live	server	has	failed	and	a	backup	taken	has	taken	over	its	duties,	you	may	want	to	restart	the	live	server	and	have	clients	fail
back.

In	case	of	"shared	disk",	simply	restart	the	original	live	server	and	kill	the	new	live	server	by	can	do	this	by	killing	the	process	itself.
Alternatively	you	can	set		allow-fail-back		to		true		on	the	slave	config	which	will	force	the	backup	that	has	become	live	to
automatically	stop.	This	configuration	would	look	like:

High	Availability	and	Failover

161

<ha-policy>

			<shared-store>

						<slave>

									<allow-failback>true</allow-failback>

						</slave>

			</shared-store>

</ha-policy>

In	replication	HA	mode	you	need	to	set	an	extra	property		check-for-live-server		to		true		in	the		master		configuration.	If	set	to	true,
during	start-up	a	live	server	will	first	search	the	cluster	for	another	server	using	its	nodeID.	If	it	finds	one,	it	will	contact	this	server	and
try	to	"fail-back".	Since	this	is	a	remote	replication	scenario,	the	"starting	live"	will	have	to	synchronize	its	data	with	the	server	running
with	its	ID,	once	they	are	in	sync,	it	will	request	the	other	server	(which	it	assumes	it	is	a	back	that	has	assumed	its	duties)	to	shutdown
for	it	to	take	over.	This	is	necessary	because	otherwise	the	live	server	has	no	means	to	know	whether	there	was	a	fail-over	or	not,	and	if
there	was	if	the	server	that	took	its	duties	is	still	running	or	not.	To	configure	this	option	at	your		broker.xml		configuration	file	as
follows:

<ha-policy>

			<replication>

						<master>

									<check-for-live-server>true</check-for-live-server>

						<master>

			</replication>

</ha-policy>

Warning

Be	aware	that	if	you	restart	a	live	server	while	after	failover	has	occurred	then		check-for-live-server		must	be	set	to		true	.	If
not	the	live	server	will	restart	and	server	the	same	messages	that	the	backup	has	already	handled	causing	duplicates.

It	is	also	possible,	in	the	case	of	shared	store,	to	cause	failover	to	occur	on	normal	server	shutdown,	to	enable	this	set	the	following
property	to	true	in	the		ha-policy		configuration	on	either	the		master		or		slave		like	so:

<ha-policy>

			<shared-store>

						<master>

									<failover-on-shutdown>true</failover-on-shutdown>

						</master>

			</shared-store>

</ha-policy>

By	default	this	is	set	to	false,	if	by	some	chance	you	have	set	this	to	false	but	still	want	to	stop	the	server	normally	and	cause	failover
then	you	can	do	this	by	using	the	management	API	as	explained	at	Management

You	can	also	force	the	running	live	server	to	shutdown	when	the	old	live	server	comes	back	up	allowing	the	original	live	server	to	take
over	automatically	by	setting	the	following	property	in	the		broker.xml		configuration	file	as	follows:

<ha-policy>

			<shared-store>

						<slave>

									<allow-failback>true</allow-failback>

						</slave>

			</shared-store>

</ha-policy>

All	Shared	Store	Configuration

The	following	table	lists	all	the		ha-policy		configuration	elements	for	HA	strategy	shared	store	for		master	:

Name Description

`failover- If	set	to	true	then	when	this	server	is	stopped	normally	the	backup	will	become	live	assuming	failover.	If	false
then	the	backup	server	will	remain	passive.	Note	that	if	false	you	want	failover	to	occur	the	you	can	use	the	the

High	Availability	and	Failover

162

shutdown` then	the	backup	server	will	remain	passive.	Note	that	if	false	you	want	failover	to	occur	the	you	can	use	the	the
management	API	as	explained	at	[Management](management.md)

The	following	table	lists	all	the		ha-policy		configuration	elements	for	HA	strategy	Shared	Store	for		slave	:

Name Description

`failover-
on-server-
shutdown`

In	the	case	of	a	backup	that	has	become	live.	then	when	set	to	true	then	when	this	server	is	stopped	normally	the
backup	will	become	liveassuming	failover.	If	false	then	the	backup	server	will	remain	passive.	Note	that	if	false
you	want	failover	to	occur	the	you	can	use	the	the	management	API	as	explained	at	[Management]
(management.md)

`allow-
failback`

Whether	a	server	will	automatically	stop	when	a	another	places	a	request	to	take	over	its	place.	The	use	case	is
when	the	backup	has	failed	over.

Colocated	Backup	Servers

It	is	also	possible	when	running	standalone	to	colocate	backup	servers	in	the	same	JVM	as	another	live	server.	Live	Servers	can	be
configured	to	request	another	live	server	in	the	cluster	to	start	a	backup	server	in	the	same	JVM	either	using	shared	store	or	replication.
The	new	backup	server	will	inherit	its	configuration	from	the	live	server	creating	it	apart	from	its	name,	which	will	be	set	to
	colocated_backup_n		where	n	is	the	number	of	backups	the	server	has	created,	and	any	directories	and	its	Connectors	and	Acceptors
which	are	discussed	later	on	in	this	chapter.	A	live	server	can	also	be	configured	to	allow	requests	from	backups	and	also	how	many
backups	a	live	server	can	start.	this	way	you	can	evenly	distribute	backups	around	the	cluster.	This	is	configured	via	the		ha-policy	
element	in	the		broker.xml		file	like	so:

<ha-policy>

			<replication>

						<colocated>

									<request-backup>true</request-backup>

									<max-backups>1</max-backups>

									<backup-request-retries>-1</backup-request-retries>

									<backup-request-retry-interval>5000</backup-request-retry-interval>

									<master/>

									<slave/>

						</colocated>

			<replication>

</ha-policy>

the	above	example	is	configured	to	use	replication,	in	this	case	the		master		and		slave		configurations	must	match	those	for	normal
replication	as	in	the	previous	chapter.		shared-store		is	also	supported

Configuring	Connectors	and	Acceptors

High	Availability	and	Failover

163

If	the	HA	Policy	is	colocated	then	connectors	and	acceptors	will	be	inherited	from	the	live	server	creating	it	and	offset	depending	on	the
setting	of		backup-port-offset		configuration	element.	If	this	is	set	to	say	100	(which	is	the	default)	and	a	connector	is	using	port	61616
then	this	will	be	set	to	5545	for	the	first	server	created,	5645	for	the	second	and	so	on.

Note

for	INVM	connectors	and	Acceptors	the	id	will	have		colocated_backup_n		appended,	where	n	is	the	backup	server	number.

Remote	Connectors

It	may	be	that	some	of	the	Connectors	configured	are	for	external	servers	and	hence	should	be	excluded	from	the	offset.	for	instance	a
Connector	used	by	the	cluster	connection	to	do	quorum	voting	for	a	replicated	backup	server,	these	can	be	omitted	from	being	offset	by
adding	them	to	the		ha-policy		configuration	like	so:

<ha-policy>

			<replication>

						<colocated>

									<excludes>

												<connector-ref>remote-connector</connector-ref>

									</excludes>

.........

</ha-policy>

Configuring	Directories

Directories	for	the	Journal,	Large	messages	and	Paging	will	be	set	according	to	what	the	HA	strategy	is.	If	shared	store	the	the	requesting
server	will	notify	the	target	server	of	which	directories	to	use.	If	replication	is	configured	then	directories	will	be	inherited	from	the
creating	server	but	have	the	new	backups	name	appended.

The	following	table	lists	all	the		ha-policy		configuration	elements	for	colocated	policy:

Name Description

`request-backup` If	true	then	the	server	will	request	a	backup	on	another	node

`backup-request-retries` How	many	times	the	live	server	will	try	to	request	a	backup,	-1	means	for	ever.

`backup-request-retry-interval` How	long	to	wait	for	retries	between	attempts	to	request	a	backup	server.

`max-backups` How	many	backups	a	live	server	can	create

`backup-port-offset` The	offset	to	use	for	the	Connectors	and	Acceptors	when	creating	a	new	backup	server.

Scaling	Down

An	alternative	to	using	Live/Backup	groups	is	to	configure	scaledown.	when	configured	for	scale	down	a	server	can	copy	all	its	messages
and	transaction	state	to	another	live	server.	The	advantage	of	this	is	that	you	dont	need	full	backups	to	provide	some	form	of	HA,
however	there	are	disadvantages	with	this	approach	the	first	being	that	it	only	deals	with	a	server	being	stopped	and	not	a	server	crash.
The	caveat	here	is	if	you	configure	a	backup	to	scale	down.

Another	disadvantage	is	that	it	is	possible	to	lose	message	ordering.	This	happens	in	the	following	scenario,	say	you	have	2	live	servers
and	messages	are	distributed	evenly	between	the	servers	from	a	single	producer,	if	one	of	the	servers	scales	down	then	the	messages	sent
back	to	the	other	server	will	be	in	the	queue	after	the	ones	already	there,	so	server	1	could	have	messages	1,3,5,7,9	and	server	2	would
have	2,4,6,8,10,	if	server	2	scales	down	the	order	in	server	1	would	be	1,3,5,7,9,2,4,6,8,10.

High	Availability	and	Failover

164

The	configuration	for	a	live	server	to	scale	down	would	be	something	like:

<ha-policy>

			<live-only>

						<scale-down>

									<connectors>

												<connector-ref>server1-connector</connector-ref>

									</connectors>

						</scale-down>

			</live-only>

</ha-policy>

In	this	instance	the	server	is	configured	to	use	a	specific	connector	to	scale	down,	if	a	connector	is	not	specified	then	the	first	INVM
connector	is	chosen,	this	is	to	make	scale	down	fromm	a	backup	server	easy	to	configure.	It	is	also	possible	to	use	discovery	to	scale
down,	this	would	look	like:

<ha-policy>

			<live-only>

						<scale-down>

									<discovery-group-ref	discovery-group-name="my-discovery-group"/>

						</scale-down>

			</live-only>

</ha-policy>

Scale	Down	with	groups

It	is	also	possible	to	configure	servers	to	only	scale	down	to	servers	that	belong	in	the	same	group.	This	is	done	by	configuring	the	group
like	so:

<ha-policy>

			<live-only>

						<scale-down>

									...

									<group-name>my-group</group-name>

						</scale-down>

			</live-only>

</ha-policy>

In	this	scenario	only	servers	that	belong	to	the	group		my-group		will	be	scaled	down	to

Scale	Down	and	Backups

It	is	also	possible	to	mix	scale	down	with	HA	via	backup	servers.	If	a	slave	is	configured	to	scale	down	then	after	failover	has	occurred,
instead	of	starting	fully	the	backup	server	will	immediately	scale	down	to	another	live	server.	The	most	appropriate	configuration	for
this	is	using	the		colocated		approach.	it	means	as	you	bring	up	live	server	they	will	automatically	be	backed	up	by	server	and	as	live

High	Availability	and	Failover

165

servers	are	shutdown,	there	messages	are	made	available	on	another	live	server.	A	typical	configuration	would	look	like:

<ha-policy>

			<replication>

						<colocated>

									<backup-request-retries>44</backup-request-retries>

									<backup-request-retry-interval>33</backup-request-retry-interval>

									<max-backups>3</max-backups>

									<request-backup>false</request-backup>

									<backup-port-offset>33</backup-port-offset>

									<master>

												<group-name>purple</group-name>

												<check-for-live-server>true</check-for-live-server>

												<cluster-name>abcdefg</cluster-name>

									</master>

									<slave>

												<group-name>tiddles</group-name>

												<max-saved-replicated-journals-size>22</max-saved-replicated-journals-size>

												<cluster-name>33rrrrr</cluster-name>

												<restart-backup>false</restart-backup>

												<scale-down>

															<!--a	grouping	of	servers	that	can	be	scaled	down	to-->

															<group-name>boo!</group-name>

															<!--either	a	discovery	group-->

															<discovery-group-ref	discovery-group-name="wahey"/>

												</scale-down>

									</slave>

						</colocated>

			</replication>

</ha-policy>

Scale	Down	and	Clients

When	a	server	is	stopping	and	preparing	to	scale	down	it	will	send	a	message	to	all	its	clients	informing	them	which	server	it	is	scaling
down	to	before	disconnecting	them.	At	this	point	the	client	will	reconnect	however	this	will	only	succeed	once	the	server	has	completed
scaledown.	This	is	to	ensure	that	any	state	such	as	queues	or	transactions	are	there	for	the	client	when	it	reconnects.	The	normal
reconnect	settings	apply	when	the	client	is	reconnecting	so	these	should	be	high	enough	to	deal	with	the	time	needed	to	scale	down.

Failover	Modes

Apache	ActiveMQ	Artemis	defines	two	types	of	client	failover:

Automatic	client	failover

Application-level	client	failover

Apache	ActiveMQ	Artemis	also	provides	100%	transparent	automatic	reattachment	of	connections	to	the	same	server	(e.g.	in	case	of
transient	network	problems).	This	is	similar	to	failover,	except	it	is	reconnecting	to	the	same	server	and	is	discussed	in	Client
Reconnection	and	Session	Reattachment

During	failover,	if	the	client	has	consumers	on	any	non	persistent	or	temporary	queues,	those	queues	will	be	automatically	recreated
during	failover	on	the	backup	node,	since	the	backup	node	will	not	have	any	knowledge	of	non	persistent	queues.

Automatic	Client	Failover

Apache	ActiveMQ	Artemis	clients	can	be	configured	to	receive	knowledge	of	all	live	and	backup	servers,	so	that	in	event	of	connection
failure	at	the	client	-	live	server	connection,	the	client	will	detect	this	and	reconnect	to	the	backup	server.	The	backup	server	will	then
automatically	recreate	any	sessions	and	consumers	that	existed	on	each	connection	before	failover,	thus	saving	the	user	from	having	to
hand-code	manual	reconnection	logic.

High	Availability	and	Failover

166

Apache	ActiveMQ	Artemis	clients	detect	connection	failure	when	it	has	not	received	packets	from	the	server	within	the	time	given	by
	client-failure-check-period		as	explained	in	section	Detecting	Dead	Connections.	If	the	client	does	not	receive	data	in	good	time,	it	will
assume	the	connection	has	failed	and	attempt	failover.	Also	if	the	socket	is	closed	by	the	OS,	usually	if	the	server	process	is	killed	rather
than	the	machine	itself	crashing,	then	the	client	will	failover	straight	away.

Apache	ActiveMQ	Artemis	clients	can	be	configured	to	discover	the	list	of	live-backup	server	groups	in	a	number	of	different	ways.
They	can	be	configured	explicitly	or	probably	the	most	common	way	of	doing	this	is	to	use	server	discovery	for	the	client	to
automatically	discover	the	list.	For	full	details	on	how	to	configure	server	discovery,	please	see	Clusters.	Alternatively,	the	clients	can
explicitly	connect	to	a	specific	server	and	download	the	current	servers	and	backups	see	Clusters.

To	enable	automatic	client	failover,	the	client	must	be	configured	to	allow	non-zero	reconnection	attempts	(as	explained	in	Client
Reconnection	and	Session	Reattachment).

By	default	failover	will	only	occur	after	at	least	one	connection	has	been	made	to	the	live	server.	In	other	words,	by	default,	failover	will
not	occur	if	the	client	fails	to	make	an	initial	connection	to	the	live	server	-	in	this	case	it	will	simply	retry	connecting	to	the	live	server
according	to	the	reconnect-attempts	property	and	fail	after	this	number	of	attempts.

Failing	over	on	the	Initial	Connection

Since	the	client	does	not	learn	about	the	full	topology	until	after	the	first	connection	is	made	there	is	a	window	where	it	does	not	know
about	the	backup.	If	a	failure	happens	at	this	point	the	client	can	only	try	reconnecting	to	the	original	live	server.	To	configure	how
many	attempts	the	client	will	make	you	can	set	the	property		initialConnectAttempts		on	the		ClientSessionFactoryImpl		or
	ActiveMQConnectionFactory		or		initial-connect-attempts		in	xml.	The	default	for	this	is		0	,	that	is	try	only	once.	Once	the	number	of
attempts	has	been	made	an	exception	will	be	thrown.

For	examples	of	automatic	failover	with	transacted	and	non-transacted	JMS	sessions,	please	see	the	examples	chapter.

A	Note	on	Server	Replication

Apache	ActiveMQ	Artemis	does	not	replicate	full	server	state	between	live	and	backup	servers.	When	the	new	session	is	automatically
recreated	on	the	backup	it	won't	have	any	knowledge	of	messages	already	sent	or	acknowledged	in	that	session.	Any	in-flight	sends	or
acknowledgements	at	the	time	of	failover	might	also	be	lost.

By	replicating	full	server	state,	theoretically	we	could	provide	a	100%	transparent	seamless	failover,	which	would	avoid	any	lost
messages	or	acknowledgements,	however	this	comes	at	a	great	cost:	replicating	the	full	server	state	(including	the	queues,	session,	etc.).
This	would	require	replication	of	the	entire	server	state	machine;	every	operation	on	the	live	server	would	have	to	replicated	on	the
replica	server(s)	in	the	exact	same	global	order	to	ensure	a	consistent	replica	state.	This	is	extremely	hard	to	do	in	a	performant	and
scalable	way,	especially	when	one	considers	that	multiple	threads	are	changing	the	live	server	state	concurrently.

It	is	possible	to	provide	full	state	machine	replication	using	techniques	such	as	virtual	synchrony,	but	this	does	not	scale	well	and
effectively	serializes	all	operations	to	a	single	thread,	dramatically	reducing	concurrency.

Other	techniques	for	multi-threaded	active	replication	exist	such	as	replicating	lock	states	or	replicating	thread	scheduling	but	this	is	very
hard	to	achieve	at	a	Java	level.

Consequently	it	has	decided	it	was	not	worth	massively	reducing	performance	and	concurrency	for	the	sake	of	100%	transparent
failover.	Even	without	100%	transparent	failover,	it	is	simple	to	guarantee	once	and	only	once	delivery,	even	in	the	case	of	failure,	by
using	a	combination	of	duplicate	detection	and	retrying	of	transactions.	However	this	is	not	100%	transparent	to	the	client	code.

Handling	Blocking	Calls	During	Failover

If	the	client	code	is	in	a	blocking	call	to	the	server,	waiting	for	a	response	to	continue	its	execution,	when	failover	occurs,	the	new	session
will	not	have	any	knowledge	of	the	call	that	was	in	progress.	This	call	might	otherwise	hang	for	ever,	waiting	for	a	response	that	will
never	come.

To	prevent	this,	Apache	ActiveMQ	Artemis	will	unblock	any	blocking	calls	that	were	in	progress	at	the	time	of	failover	by	making	them
throw	a		javax.jms.JMSException		(if	using	JMS),	or	a		ActiveMQException		with	error	code		ActiveMQException.UNBLOCKED	.	It	is	up	to	the
client	code	to	catch	this	exception	and	retry	any	operations	if	desired.

High	Availability	and	Failover

167

If	the	method	being	unblocked	is	a	call	to	commit(),	or	prepare(),	then	the	transaction	will	be	automatically	rolled	back	and	Apache
ActiveMQ	Artemis	will	throw	a		javax.jms.TransactionRolledBackException		(if	using	JMS),	or	a		ActiveMQException		with	error	code
	ActiveMQException.TRANSACTION_ROLLED_BACK		if	using	the	core	API.

Handling	Failover	With	Transactions

If	the	session	is	transactional	and	messages	have	already	been	sent	or	acknowledged	in	the	current	transaction,	then	the	server	cannot	be
sure	that	messages	sent	or	acknowledgements	have	not	been	lost	during	the	failover.

Consequently	the	transaction	will	be	marked	as	rollback-only,	and	any	subsequent	attempt	to	commit	it	will	throw	a
	javax.jms.TransactionRolledBackException		(if	using	JMS),	or	a		ActiveMQException		with	error	code
	ActiveMQException.TRANSACTION_ROLLED_BACK		if	using	the	core	API.

Warning

The	caveat	to	this	rule	is	when	XA	is	used	either	via	JMS	or	through	the	core	API.	If	2	phase	commit	is	used	and	prepare	has
already	been	called	then	rolling	back	could	cause	a		HeuristicMixedException	.	Because	of	this	the	commit	will	throw	a
	XAException.XA_RETRY		exception.	This	informs	the	Transaction	Manager	that	it	should	retry	the	commit	at	some	later	point	in
time,	a	side	effect	of	this	is	that	any	non	persistent	messages	will	be	lost.	To	avoid	this	use	persistent	messages	when	using	XA.
With	acknowledgements	this	is	not	an	issue	since	they	are	flushed	to	the	server	before	prepare	gets	called.

It	is	up	to	the	user	to	catch	the	exception,	and	perform	any	client	side	local	rollback	code	as	necessary.	There	is	no	need	to	manually
rollback	the	session	-	it	is	already	rolled	back.	The	user	can	then	just	retry	the	transactional	operations	again	on	the	same	session.

Apache	ActiveMQ	Artemis	ships	with	a	fully	functioning	example	demonstrating	how	to	do	this,	please	see	the	examples	chapter.

If	failover	occurs	when	a	commit	call	is	being	executed,	the	server,	as	previously	described,	will	unblock	the	call	to	prevent	a	hang,	since
no	response	will	come	back.	In	this	case	it	is	not	easy	for	the	client	to	determine	whether	the	transaction	commit	was	actually	processed
on	the	live	server	before	failure	occurred.

Note

If	XA	is	being	used	either	via	JMS	or	through	the	core	API	then	an		XAException.XA_RETRY		is	thrown.	This	is	to	inform
Transaction	Managers	that	a	retry	should	occur	at	some	point.	At	some	later	point	in	time	the	Transaction	Manager	will	retry
the	commit.	If	the	original	commit	has	not	occurred	then	it	will	still	exist	and	be	committed,	if	it	does	not	exist	then	it	is	assumed
to	have	been	committed	although	the	transaction	manager	may	log	a	warning.

To	remedy	this,	the	client	can	simply	enable	duplicate	detection	(Duplicate	Message	Detection)	in	the	transaction,	and	retry	the
transaction	operations	again	after	the	call	is	unblocked.	If	the	transaction	had	indeed	been	committed	on	the	live	server	successfully
before	failover,	then	when	the	transaction	is	retried,	duplicate	detection	will	ensure	that	any	durable	messages	resent	in	the	transaction
will	be	ignored	on	the	server	to	prevent	them	getting	sent	more	than	once.

Note

By	catching	the	rollback	exceptions	and	retrying,	catching	unblocked	calls	and	enabling	duplicate	detection,	once	and	only	once
delivery	guarantees	for	messages	can	be	provided	in	the	case	of	failure,	guaranteeing	100%	no	loss	or	duplication	of	messages.

Handling	Failover	With	Non	Transactional	Sessions

If	the	session	is	non	transactional,	messages	or	acknowledgements	can	be	lost	in	the	event	of	failover.

If	you	wish	to	provide	once	and	only	once	delivery	guarantees	for	non	transacted	sessions	too,	enabled	duplicate	detection,	and	catch
unblock	exceptions	as	described	in	Handling	Blocking	Calls	During	Failover

Getting	Notified	of	Connection	Failure

JMS	provides	a	standard	mechanism	for	getting	notified	asynchronously	of	connection	failure:		java.jms.ExceptionListener	.	Please
consult	the	JMS	javadoc	or	any	good	JMS	tutorial	for	more	information	on	how	to	use	this.

High	Availability	and	Failover

168

The	Apache	ActiveMQ	Artemis	core	API	also	provides	a	similar	feature	in	the	form	of	the	class
	org.apache.activemq.artemis.core.client.SessionFailureListener	

Any	ExceptionListener	or	SessionFailureListener	instance	will	always	be	called	by	ActiveMQ	Artemis	on	event	of	connection	failure,
irrespective	of	whether	the	connection	was	successfully	failed	over,	reconnected	or	reattached,	however	you	can	find	out	if	reconnect	or
reattach	has	happened	by	either	the		failedOver		flag	passed	in	on	the		connectionFailed		on		SessionfailureListener		or	by	inspecting
the	error	code	on	the		javax.jms.JMSException		which	will	be	one	of	the	following:

JMSException	error	codes

Error	code Description

FAILOVER Failover	has	occurred	and	we	have	successfully	reattached	or	reconnected.

DISCONNECT No	failover	has	occurred	and	we	are	disconnected.

Application-Level	Failover

In	some	cases	you	may	not	want	automatic	client	failover,	and	prefer	to	handle	any	connection	failure	yourself,	and	code	your	own
manually	reconnection	logic	in	your	own	failure	handler.	We	define	this	as	application-level	failover,	since	the	failover	is	handled	at	the
user	application	level.

To	implement	application-level	failover,	if	you're	using	JMS	then	you	need	to	set	an		ExceptionListener		class	on	the	JMS	connection.
The		ExceptionListener		will	be	called	by	Apache	ActiveMQ	Artemis	in	the	event	that	connection	failure	is	detected.	In	your
	ExceptionListener	,	you	would	close	your	old	JMS	connections,	potentially	look	up	new	connection	factory	instances	from	JNDI	and
creating	new	connections.

For	a	working	example	of	application-level	failover,	please	see	the	examples	chapter.

If	you	are	using	the	core	API,	then	the	procedure	is	very	similar:	you	would	set	a		FailureListener		on	the	core		ClientSession	
instances.

High	Availability	and	Failover

169

Graceful	Server	Shutdown
In	certain	circumstances	an	administrator	might	not	want	to	disconnect	all	clients	immediately	when	stopping	the	broker.	In	this
situation	the	broker	can	be	configured	to	shutdown	gracefully	using	the		graceful-shutdown-enabled		boolean	configuration	parameter.

When	the		graceful-shutdown-enabled		configuration	parameter	is		true		and	the	broker	is	shutdown	it	will	first	prevent	any	additional
clients	from	connecting	and	then	it	will	wait	for	any	existing	connections	to	be	terminated	by	the	client	before	completing	the	shutdown
process.	The	default	value	is		false	.

Of	course,	it's	possible	a	client	could	keep	a	connection	to	the	broker	indefinitely	effectively	preventing	the	broker	from	shutting	down
gracefully.	To	deal	with	this	of	situation	the		graceful-shutdown-timeout		configuration	parameter	is	available.	This	tells	the	broker	(in
milliseconds)	how	long	to	wait	for	all	clients	to	disconnect	before	forcefully	disconnecting	the	clients	and	proceeding	with	the	shutdown
process.	The	default	value	is		-1		which	means	the	broker	will	wait	indefinitely	for	clients	to	disconnect.

Graceful	Server	Shutdown

170

Libaio	Native	Libraries
Apache	ActiveMQ	Artemis	distributes	a	native	library,	used	as	a	bridge	for	its	fast	journal,	between	Apache	ActiveMQ	Artemis	and
Linux	libaio.

	libaio		is	a	library,	developed	as	part	of	the	Linux	kernel	project.	With		libaio		we	submit	writes	to	the	operating	system	where	they
are	processed	asynchronously.	Some	time	later	the	OS	will	call	our	code	back	when	they	have	been	processed.

We	use	this	in	our	high	performance	journal	if	configured	to	do	so,	please	see	Persistence.

These	are	the	native	libraries	distributed	by	Apache	ActiveMQ	Artemis:

libActiveMQAIO32.so	-	x86	32	bits

libActiveMQAIO64.so	-	x86	64	bits

When	using	libaio,	Apache	ActiveMQ	Artemis	will	always	try	loading	these	files	as	long	as	they	are	on	the	library	path

Runtime	dependencies

If	you	just	want	to	use	the	provided	native	binaries	you	need	to	install	the	required	libaio	dependency.

You	can	install	libaio	using	the	following	steps	as	the	root	user:

Using	yum,	(e.g.	on	Fedora	or	Red	Hat	Enterprise	Linux):

yum	install	libaio

Using	aptitude,	(e.g.	on	Ubuntu	or	Debian	system):

apt-get	install	libaio

Compiling	the	native	libraries

In	the	case	that	you	are	using	Linux	on	a	platform	other	than	x86_32	or	x86_64	(for	example	Itanium	64	bits	or	IBM	Power)	you	may
need	to	compile	the	native	library,	since	we	do	not	distribute	binaries	for	those	platforms	with	the	release.

Compilation	dependencies

Note

The	native	layer	is	only	available	on	Linux.	If	you	are	in	a	platform	other	than	Linux	the	native	compilation	will	not	work

These	are	the	required	linux	packages	to	be	installed	for	the	compilation	to	work:

gcc	-	C	Compiler

gcc-c++	or	g++	-	Extension	to	gcc	with	support	for	C++

libtool	-	Tool	for	link	editing	native	libraries

libaio	-	library	to	disk	asynchronous	IO	kernel	functions

libaio-dev	-	Compilation	support	for	libaio

cmake

Libaio	Native	Libraries

171

A	full	JDK	installed	with	the	environment	variable	JAVA_HOME	set	to	its	location

To	perform	this	installation	on	RHEL	or	Fedora,	you	can	simply	type	this	at	a	command	line:

sudo	yum	install	libtool	gcc-c++	gcc	libaio	libaio-devel	cmake

Or	on	Debian	systems:

sudo	apt-get	install	libtool	gcc-g++	gcc	libaio	libaio-	cmake

Note

You	could	find	a	slight	variation	of	the	package	names	depending	on	the	version	and	Linux	distribution.	(for	example	gcc-c++	on
Fedora	versus	g++	on	Debian	systems)

Invoking	the	compilation

In	the	source	distribution	or	git	clone,	in	the		artemis-native		directory,	execute	the	shell	script		compile-native.sh	.	This	script	will
invoke	the	proper	commands	to	perform	the	native	build.

If	you	want	more	information	refer	to	the	cmake	web	pages.

Libaio	Native	Libraries

172

http://cmake.org

Thread	management
This	chapter	describes	how	Apache	ActiveMQ	Artemis	uses	and	pools	threads	and	how	you	can	manage	them.

First	we'll	discuss	how	threads	are	managed	and	used	on	the	server	side,	then	we'll	look	at	the	client	side.

Server-Side	Thread	Management

Each	Apache	ActiveMQ	Artemis	Server	maintains	a	single	thread	pool	for	general	use,	and	a	scheduled	thread	pool	for	scheduled	use.	A
Java	scheduled	thread	pool	cannot	be	configured	to	use	a	standard	thread	pool,	otherwise	we	could	use	a	single	thread	pool	for	both
scheduled	and	non	scheduled	activity.

Apache	ActiveMQ	Artemis	will,	by	default,	cap	its	thread	pool	at	three	times	the	number	of	cores	(or	hyper-threads)	as	reported	by
	Runtime.getRuntime().availableProcessors()		for	processing	incoming	packets.	To	override	this	value,	you	can	set	the	number	of
threads	by	specifying	the	parameter		nioRemotingThreads		in	the	transport	configuration.	See	the	configuring	transports	for	more
information	on	this.

There	are	also	a	small	number	of	other	places	where	threads	are	used	directly,	we'll	discuss	each	in	turn.

Server	Scheduled	Thread	Pool

The	server	scheduled	thread	pool	is	used	for	most	activities	on	the	server	side	that	require	running	periodically	or	with	delays.	It	maps
internally	to	a		java.util.concurrent.ScheduledThreadPoolExecutor		instance.

The	maximum	number	of	thread	used	by	this	pool	is	configure	in		broker.xml		with	the		scheduled-thread-pool-max-size		parameter.	The
default	value	is		5		threads.	A	small	number	of	threads	is	usually	sufficient	for	this	pool.

General	Purpose	Server	Thread	Pool

This	general	purpose	thread	pool	is	used	for	most	asynchronous	actions	on	the	server	side.	It	maps	internally	to	a
	java.util.concurrent.ThreadPoolExecutor		instance.

The	maximum	number	of	thread	used	by	this	pool	is	configure	in		broker.xml		with	the		thread-pool-max-size		parameter.

If	a	value	of		-1		is	used	this	signifies	that	the	thread	pool	has	no	upper	bound	and	new	threads	will	be	created	on	demand	if	there	are
not	enough	threads	available	to	satisfy	a	request.	If	activity	later	subsides	then	threads	are	timed-out	and	closed.

If	a	value	of		n		where		n	is	a	positive	integer	greater	than	zero	is	used	this	signifies	that	the	thread	pool	is	bounded.	If	more	requests
come	in	and	there	are	no	free	threads	in	the	pool	and	the	pool	is	full	then	requests	will	block	until	a	thread	becomes	available.	It	is
recommended	that	a	bounded	thread	pool	is	used	with	caution	since	it	can	lead	to	dead-lock	situations	if	the	upper	bound	is	chosen	to	be
too	low.

The	default	value	for		thread-pool-max-size		is		30	.

See	the	J2SE	javadoc	for	more	information	on	unbounded	(cached),	and	bounded	(fixed)	thread	pools.

Expiry	Reaper	Thread

A	single	thread	is	also	used	on	the	server	side	to	scan	for	expired	messages	in	queues.	We	cannot	use	either	of	the	thread	pools	for	this
since	this	thread	needs	to	run	at	its	own	configurable	priority.

For	more	information	on	configuring	the	reaper,	please	see	message	expiry.

Asynchronous	IO

Thread	management

173

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/ThreadPoolExecutor.htm

Asynchronous	IO	has	a	thread	pool	for	receiving	and	dispatching	events	out	of	the	native	layer.	You	will	find	it	on	a	thread	dump	with
the	prefix	ActiveMQ-AIO-poller-pool.	Apache	ActiveMQ	Artemis	uses	one	thread	per	opened	file	on	the	journal	(there	is	usually	one).

There	is	also	a	single	thread	used	to	invoke	writes	on	libaio.	We	do	that	to	avoid	context	switching	on	libaio	that	would	cause
performance	issues.	You	will	find	this	thread	on	a	thread	dump	with	the	prefix	ActiveMQ-AIO-writer-pool.

Client-Side	Thread	Management

On	the	client	side,	Apache	ActiveMQ	Artemis	maintains	a	single	static	scheduled	thread	pool	and	a	single	static	general	thread	pool	for
use	by	all	clients	using	the	same	classloader	in	that	JVM	instance.

The	static	scheduled	thread	pool	has	a	maximum	size	of		5		threads,	and	the	general	purpose	thread	pool	has	an	unbounded	maximum
size.

If	required	Apache	ActiveMQ	Artemis	can	also	be	configured	so	that	each		ClientSessionFactory		instance	does	not	use	these	static
pools	but	instead	maintains	its	own	scheduled	and	general	purpose	pool.	Any	sessions	created	from	that		ClientSessionFactory		will	use
those	pools	instead.

To	configure	a		ClientSessionFactory		instance	to	use	its	own	pools,	simply	use	the	appropriate	setter	methods	immediately	after
creation,	for	example:

ServerLocator	locator	=	ActiveMQClient.createServerLocatorWithoutHA(...)

ClientSessionFactory	myFactory	=	locator.createClientSessionFactory();

myFactory.setUseGlobalPools(false);

myFactory.setScheduledThreadPoolMaxSize(10);

myFactory.setThreadPoolMaxSize(-1);

If	you're	using	the	JMS	API,	you	can	set	the	same	parameters	on	the	ClientSessionFactory	and	use	it	to	create	the		ConnectionFactory	
instance,	for	example:

ConnectionFactory	myConnectionFactory	=	ActiveMQJMSClient.createConnectionFactory(myFactory);

If	you're	using	JNDI	to	instantiate		ActiveMQConnectionFactory		instances,	you	can	also	set	these	parameters	in	the	JNDI	context
environment,	e.g.		jndi.properties	.	Here's	a	simple	example	using	the	"ConnectionFactory"	connection	factory	which	is	available	in	the
context	by	default:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

java.naming.provider.url=tcp://localhost:61616

connection.ConnectionFactory.useGlobalPools=false

connection.ConnectionFactory.scheduledThreadPoolMaxSize=10

connection.ConnectionFactory.threadPoolMaxSize=-1

Thread	management

174

Logging
Apache	ActiveMQ	Artemis	uses	the	JBoss	Logging	framework	to	do	its	logging	and	is	configurable	via	the		logging.properties		file
found	in	the	configuration	directories.	This	is	configured	by	Default	to	log	to	both	the	console	and	to	a	file.

There	are	6	loggers	available	which	are	as	follows:

Logger Logger	Description

org.jboss.logging Logs	any	calls	not	handled	by	the	Apache	ActiveMQ	Artemis	loggers

org.apache.activemq.artemis.core.server Logs	the	core	server

org.apache.activemq.artemis.utils Logs	utility	calls

org.apache.activemq.artemis.journal Logs	Journal	calls

org.apache.activemq.artemis.jms Logs	JMS	calls

org.apache.activemq.artemis.integration.bootstrap Logs	bootstrap	calls

:	Global	Configuration	Properties

Logging	in	a	client	or	with	an	Embedded	server

Firstly,	if	you	want	to	enable	logging	on	the	client	side	you	need	to	include	the	JBoss	logging	jars	in	your	library.	If	you	are	using	maven
add	the	following	dependencies.

<dependency>

			<groupId>org.jboss.logmanager</groupId>

			<artifactId>jboss-logmanager</artifactId>

			<version>1.5.3.Final</version>

</dependency>

<dependency>

			<groupId>org.apache.activemq</groupId>

			<artifactId>activemq-core-client</artifactId>

			<version>1.0.0.Final</version>

</dependency>

There	are	2	properties	you	need	to	set	when	starting	your	java	program,	the	first	is	to	set	the	Log	Manager	to	use	the	JBoss	Log
Manager,	this	is	done	by	setting	the		-Djava.util.logging.manager		property	i.e.		-
Djava.util.logging.manager=org.jboss.logmanager.LogManager	

The	second	is	to	set	the	location	of	the	logging.properties	file	to	use,	this	is	done	via	the		-Dlogging.configuration		for	instance		-
Dlogging.configuration=file:///home/user/projects/myProject/logging.properties	.

Note

The	value	for	this	needs	to	be	valid	URL

The	following	is	a	typical		logging.properties	for	a	client	

#	Root	logger	option

loggers=org.jboss.logging,org.apache.activemq.artemis.core.server,org.apache.activemq.artemis.utils,org.apache.activemq.artemi

s.journal,org.apache.activemq.artemis.jms,org.apache.activemq.artemis.ra

#	Root	logger	level

logger.level=INFO

#	Apache	ActiveMQ	Artemis	logger	levels

logger.org.apache.activemq.artemis.core.server.level=INFO

logger.org.apache.activemq.artemis.utils.level=INFO

logger.org.apache.activemq.artemis.jms.level=DEBUG

Logging

175

#	Root	logger	handlers

logger.handlers=FILE,CONSOLE

#	Console	handler	configuration

handler.CONSOLE=org.jboss.logmanager.handlers.ConsoleHandler

handler.CONSOLE.properties=autoFlush

handler.CONSOLE.level=FINE

handler.CONSOLE.autoFlush=true

handler.CONSOLE.formatter=PATTERN

#	File	handler	configuration

handler.FILE=org.jboss.logmanager.handlers.FileHandler

handler.FILE.level=FINE

handler.FILE.properties=autoFlush,fileName

handler.FILE.autoFlush=true

handler.FILE.fileName=activemq.log

handler.FILE.formatter=PATTERN

#	Formatter	pattern	configuration

formatter.PATTERN=org.jboss.logmanager.formatters.PatternFormatter

formatter.PATTERN.properties=pattern

formatter.PATTERN.pattern=%d{HH:mm:ss,SSS}	%-5p	[%c]	%s%E%n

Logging

176

REST	Interface
The	Apache	ActiveMQ	Artemis	REST	interface	allows	you	to	leverage	the	reliability	and	scalability	features	of	Apache	ActiveMQ
Artemis	over	a	simple	REST/HTTP	interface.	Messages	are	produced	and	consumed	by	sending	and	receiving	simple	HTTP	messages
that	contain	the	content	you	want	to	push	around.	For	instance,	here's	a	simple	example	of	posting	an	order	to	an	order	processing
queue	express	as	an	HTTP	message:

POST	/queue/orders/create	HTTP/1.1

Host:	example.com

Content-Type:	application/xml

<order>

			<name>Bill</name>

			<item>iPhone	4</item>

			<cost>$199.99</cost>

</order>

As	you	can	see,	we're	just	posting	some	arbitrary	XML	document	to	a	URL.	When	the	XML	is	received	on	the	server	is	it	processed
within	Apache	ActiveMQ	Artemis	as	a	JMS	message	and	distributed	through	core	Apache	ActiveMQ	Artemis.	Simple	and	easy.
Consuming	messages	from	a	queue	or	topic	looks	very	similar.	We'll	discuss	the	entire	interface	in	detail	later	in	this	docbook.

Goals	of	REST	Interface
Why	would	you	want	to	use	Apache	ActiveMQ	Artemis's	REST	interface?	What	are	the	goals	of	the	REST	interface?

Easily	usable	by	machine-based	(code)	clients.

Zero	client	footprint.	We	want	Apache	ActiveMQ	Artemis	to	be	usable	by	any	client/programming	language	that	has	an	adequate
HTTP	client	library.	You	shouldn't	have	to	download,	install,	and	configure	a	special	library	to	interact	with	Apache	ActiveMQ
Artemis.

Lightweight	interoperability.	The	HTTP	protocol	is	strong	enough	to	be	our	message	exchange	protocol.	Since	interactions	are
RESTful	the	HTTP	uniform	interface	provides	all	the	interoperability	you	need	to	communicate	between	different	languages,
platforms,	and	even	messaging	implementations	that	choose	to	implement	the	same	RESTful	interface	as	Apache	ActiveMQ
Artemis	(i.e.	the	REST-*	effort.)

No	envelope	(e.g.	SOAP)	or	feed	(e.g.	Atom)	format	requirements.	You	shouldn't	have	to	learn,	use,	or	parse	a	specific	XML
document	format	in	order	to	send	and	receive	messages	through	Apache	ActiveMQ	Artemis's	REST	interface.

Leverage	the	reliability,	scalability,	and	clustering	features	of	Apache	ActiveMQ	Artemis	on	the	back	end	without	sacrificing	the
simplicity	of	a	REST	interface.

Installation	and	Configuration
Apache	ActiveMQ	Artemis's	REST	interface	is	installed	as	a	Web	archive	(WAR).	It	depends	on	the	RESTEasy	project	and	can
currently	only	run	within	a	servlet	container.	Installing	the	Apache	ActiveMQ	Artemis	REST	interface	is	a	little	bit	different	depending
whether	Apache	ActiveMQ	Artemis	is	already	installed	and	configured	for	your	environment	(e.g.	you're	deploying	within	Wildfly)	or
you	want	the	ActiveMQ	Artemis	REST	WAR	to	startup	and	manage	the	Apache	ActiveMQ	Artemis	server	(e.g.	you're	deploying
within	something	like	Apache	Tomcat).

Installing	Within	Pre-configured	Environment

REST	Interface

177

http://rest-star.org
http://jboss.org/resteasy

This	section	should	be	used	when	you	want	to	use	the	Apache	ActiveMQ	Artemis	REST	interface	in	an	environment	that	already	has
Apache	ActiveMQ	Artemis	installed	and	running,	e.g.	the	Wildfly	application	server.	You	must	create	a	Web	archive	(.WAR)	file	with
the	following	web.xml	settings:

<web-app>

			<listener>

						<listener-class>

									org.jboss.resteasy.plugins.server.servlet.ResteasyBootstrap

						</listener-class>

			</listener>

			<listener>

						<listener-class>

									org.apache.activemq.artemis.rest.integration.RestMessagingBootstrapListener

						</listener-class>

			</listener>

			<filter>

						<filter-name>Rest-Messaging</filter-name>

						<filter-class>

									org.jboss.resteasy.plugins.server.servlet.FilterDispatcher

						</filter-class>

			</filter>

			<filter-mapping>

						<filter-name>Rest-Messaging</filter-name>

						<url-pattern>/*</url-pattern>

			</filter-mapping>

</web-app>

Within	your	WEB-INF/lib	directory	you	must	have	the	Apache	ActiveMQ	Artemis-rest.jar	file.	If	RESTEasy	is	not	installed	within
your	environment,	you	must	add	the	RESTEasy	jar	files	within	the	lib	directory	as	well.	Here's	a	sample	Maven	pom.xml	that	can	build
a	WAR	with	the	Apache	ActiveMQ	Artemis	REST	library.

<project	xmlns="http://maven.apache.org/POM/4.0.0"

			xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

			xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	http://maven.apache.org/maven-v4_0_0.xsd">

			<modelVersion>4.0.0</modelVersion>

			<groupId>org.somebody</groupId>

			<artifactId>artemis-rest</artifactId>

			<packaging>war</packaging>

			<name>My	App</name>

			<version>1.0-SNAPSHOT</version>

			<dependencies>

						<dependency>

									<groupId>org.apache.activemq.rest</groupId>

									<artifactId>artemis-rest</artifactId>

									<version>$VERSION</version>

									<exclusions>

												<exclusion>

															<groupId>*</groupId>

															<artifactId>*</artifactId>

												</exclusion>

									</exclusions>

						</dependency>

			</dependencies>

</project>

The	project	structure	should	look	this	like:

|--	pom.xml

`--	src

			`--	main

							`--	webapp

											`--	WEB-INF

REST	Interface

178

															`--	web.xml

It	is	worth	noting	that	when	deploying	a	WAR	in	a	Java	EE	application	server	like	Wildfly	the	URL	for	the	resulting	application	will
include	the	name	of	the	WAR	by	default.	For	example,	if	you've	constructed	a	WAR	as	described	above	named	"activemq-rest.war"	then
clients	will	access	it	at,	e.g.	http://localhost:8080/activemq-rest/[queues|topics\].
We'll	see	more	about	this	later.

Bootstrapping	ActiveMQ	Artemis	Along	with	REST

You	can	bootstrap	Apache	ActiveMQ	Artemis	within	your	WAR	as	well.	To	do	this,	you	must	have	the	Apache	ActiveMQ	Artemis
core	and	JMS	jars	along	with	Netty,	RESTEasy,	and	the	Apache	ActiveMQ	Artemis	REST	jar	within	your	WEB-INF/lib.	You	must
also	have	an	Apache	ActiveMQ	Artemis-configuration.xml	config	file	within	WEB-INF/classes.	The	examples	that	come	with	the
Apache	ActiveMQ	Artemis	REST	distribution	show	how	to	do	this.	You	must	also	add	an	additional	listener	to	your	web.xml	file.
Here's	an	example:

<web-app>

			<listener>

						<listener-class>

									org.jboss.resteasy.plugins.server.servlet.ResteasyBootstrap

						</listener-class>

			</listener>

			<listener>

						<listener-class>

									org.apache.activemq.artemis.rest.integration.ActiveMQBootstrapListener

						</listener-class>

			</listener>

			<listener>

						<listener-class>

									org.apache.activemq.artemis.rest.integration.RestMessagingBootstrapListener

						</listener-class>

			</listener>

			<filter>

						<filter-name>Rest-Messaging</filter-name>

						<filter-class>

									org.jboss.resteasy.plugins.server.servlet.FilterDispatcher

						</filter-class>

			</filter>

			<filter-mapping>

						<filter-name>Rest-Messaging</filter-name>

						<url-pattern>/*</url-pattern>

			</filter-mapping>

</web-app>

Here's	a	Maven	pom.xml	file	for	creating	a	WAR	for	this	environment.	Make	sure	your	Apache	ActiveMQ	Artemis	configuration	file(s)
are	within	the	src/main/resources	directory	so	that	they	are	stuffed	within	the	WAR's	WEB-INF/classes	directory!

<project	xmlns="http://maven.apache.org/POM/4.0.0"

			xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

			xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	http://maven.apache.org/maven-v4_0_0.xsd">

			<modelVersion>4.0.0</modelVersion>

			<groupId>org.somebody</groupId>

			<artifactId>artemis-rest</artifactId>

			<packaging>war</packaging>

			<name>My	App</name>

			<version>1.0-SNAPSHOT</version>

			<dependencies>

						<dependency>

									<groupId>org.apache.activemq.rest</groupId>

									<artifactId>artemis-rest</artifactId>

REST	Interface

179

http://localhost:8080/activemq-rest/[queues|topics)\\

									<version>$VERSION</version>

						</dependency>

			</dependencies>

</project>

The	project	structure	should	look	this	like:

|--	pom.xml

`--	src

			`--	main

							`--	resources

											`--	broker.xml

							`--	webapp

											`--	WEB-INF

															`--	web.xml

REST	Configuration

The	Apache	ActiveMQ	Artemis	REST	implementation	does	have	some	configuration	options.	These	are	configured	via	XML
configuration	file	that	must	be	in	your	WEB-INF/classes	directory.	You	must	set	the	web.xml	context-param
	rest.messaging.config.file		to	specify	the	name	of	the	configuration	file.	Below	is	the	format	of	the	XML	configuration	file	and	the
default	values	for	each.

<rest-messaging>

			<server-in-vm-id>0</server-in-vm-id>

			<use-link-headers>false</use-link-headers>

			<default-durable-send>false</default-durable-send>

			<dups-ok>true</dups-ok>

			<topic-push-store-dir>topic-push-store</topic-push-store-dir>

			<queue-push-store-dir>queue-push-store</queue-push-store-dir>

			<producer-time-to-live>0</producer-time-to-live>

			<producer-session-pool-size>10</producer-session-pool-size>

			<session-timeout-task-interval>1</session-timeout-task-interval>

			<consumer-session-timeout-seconds>300</consumer-session-timeout-seconds>

			<consumer-window-size>-1</consumer-window-size>

</rest-messaging>

Let's	give	an	explanation	of	each	config	option.

	server-in-vm-id	.	The	Apache	ActiveMQ	Artemis	REST	impl	uses	the	IN-VM	transport	to	communicate	with	Apache
ActiveMQ	Artemis.	It	uses	the	default	server	id,	which	is	"0".

	use-link-headers	.	By	default,	all	links	(URLs)	are	published	using	custom	headers.	You	can	instead	have	the	Apache	ActiveMQ
Artemis	REST	implementation	publish	links	using	the	Link	Header	specification	instead	if	you	desire.

	default-durable-send	.	Whether	a	posted	message	should	be	persisted	by	default	if	the	user	does	not	specify	a	durable	query
parameter.

	dups-ok	.	If	this	is	true,	no	duplicate	detection	protocol	will	be	enforced	for	message	posting.

	topic-push-store-dir	.	This	must	be	a	relative	or	absolute	file	system	path.	This	is	a	directory	where	push	registrations	for	topics
are	stored.	See	Pushing	Messages.

	queue-push-store-dir	.	This	must	be	a	relative	or	absolute	file	system	path.	This	is	a	directory	where	push	registrations	for	queues
are	stored.	See	Pushing	Messages.

	producer-session-pool-size	.	The	REST	implementation	pools	Apache	ActiveMQ	Artemis	sessions	for	sending	messages.	This	is
the	size	of	the	pool.	That	number	of	sessions	will	be	created	at	startup	time.

	producer-time-to-live	.	Default	time	to	live	for	posted	messages.	Default	is	no	ttl.

	session-timeout-task-interval	.	Pull	consumers	and	pull	subscriptions	can	time	out.	This	is	the	interval	the	thread	that	checks	for
timed-out	sessions	will	run	at.	A	value	of	1	means	it	will	run	every	1	second.

REST	Interface

180

http://tools.ietf.org/html/draft-nottingham-http-link-header-10

	consumer-session-timeout-seconds	.	Timeout	in	seconds	for	pull	consumers/subscriptions	that	remain	idle	for	that	amount	of	time.

	consumer-window-size	.	For	consumers,	this	config	option	is	the	same	as	the	Apache	ActiveMQ	Artemis	one	of	the	same	name.	It
will	be	used	by	sessions	created	by	the	Apache	ActiveMQ	Artemis	REST	implementation.

Apache	ActiveMQ	Artemis	REST	Interface	Basics

The	Apache	ActiveMQ	Artemis	REST	interface	publishes	a	variety	of	REST	resources	to	perform	various	tasks	on	a	queue	or	topic.
Only	the	top-level	queue	and	topic	URI	schemes	are	published	to	the	outside	world.	You	must	discover	all	over	resources	to	interact
with	by	looking	for	and	traversing	links.	You'll	find	published	links	within	custom	response	headers	and	embedded	in	published	XML
representations.	Let's	look	at	how	this	works.

Queue	and	Topic	Resources

To	interact	with	a	queue	or	topic	you	do	a	HEAD	or	GET	request	on	the	following	relative	URI	pattern:

/queues/{name}

/topics/{name}

The	base	of	the	URI	is	the	base	URL	of	the	WAR	you	deployed	the	Apache	ActiveMQ	Artemis	REST	server	within	as	defined	in	the
Installation	and	Configuration	section	of	this	document.	Replace	the		{name}		string	within	the	above	URI	pattern	with	the	name	of	the
queue	or	topic	you	are	interested	in	interacting	with.	For	example	if	you	have	configured	a	JMS	topic	named	"foo"	within	your
	activemq-jms.xml		file,	the	URI	name	should	be	"jms.topic.foo".	If	you	have	configured	a	JMS	queue	name	"bar"	within	your		activemq-
jms.xml		file,	the	URI	name	should	be	"jms.queue.bar".	Internally,	Apache	ActiveMQ	Artemis	prepends	the	"jms.topic"	or	"jms.queue"
strings	to	the	name	of	the	deployed	destination.	Next,	perform	your	HEAD	or	GET	request	on	this	URI.	Here's	what	a
request/response	would	look	like.

HEAD	/queues/jms.queue.bar	HTTP/1.1

Host:	example.com

---	Response	---

HTTP/1.1	200	Ok

msg-create:	http://example.com/queues/jms.queue.bar/create

msg-create-with-id:	http://example.com/queues/jms.queue.bar/create/{id}

msg-pull-consumers:	http://example.com/queues/jms.queue.bar/pull-consumers

msg-push-consumers:	http://example.com/queues/jms.queue.bar/push-consumers

Note

You	can	use	the	"curl"	utility	to	test	this	easily.	Simply	execute	a	command	like	this:

curl	--head	http://example.com/queues/jms.queue.bar

The	HEAD	or	GET	response	contains	a	number	of	custom	response	headers	that	are	URLs	to	additional	REST	resources	that	allow	you
to	interact	with	the	queue	or	topic	in	different	ways.	It	is	important	not	to	rely	on	the	scheme	of	the	URLs	returned	within	these
headers	as	they	are	an	implementation	detail.	Treat	them	as	opaque	and	query	for	them	each	and	every	time	you	initially	interact	(at
boot	time)	with	the	server.	If	you	treat	all	URLs	as	opaque	then	you	will	be	isolated	from	implementation	changes	as	the	Apache
ActiveMQ	Artemis	REST	interface	evolves	over	time.

Queue	Resource	Response	Headers

Below	is	a	list	of	response	headers	you	should	expect	when	interacting	with	a	Queue	resource.

	msg-create	.	This	is	a	URL	you	POST	messages	to.	The	semantics	of	this	link	are	described	in	Posting	Messages.

	msg-create-with-id	.	This	is	a	URL	template	you	can	use	to	POST	messages.	The	semantics	of	this	link	are	described	in	Posting
Messages.

REST	Interface

181

	msg-pull-consumers	.	This	is	a	URL	for	creating	consumers	that	will	pull	from	a	queue.	The	semantics	of	this	link	are	described	in
Consuming	Messages	via	Pull.

	msg-push-consumers	.	This	is	a	URL	for	registering	other	URLs	you	want	the	Apache	ActiveMQ	Artemis	REST	server	to	push
messages	to.	The	semantics	of	this	link	are	described	in	Pushing	Messages.

Topic	Resource	Response	Headers

Below	is	a	list	of	response	headers	you	should	expect	when	interacting	with	a	Topic	resource.

	msg-create	.	This	is	a	URL	you	POST	messages	to.	The	semantics	of	this	link	are	described	in	Posting	Messages.

	msg-create-with-id	.	This	is	a	URL	template	you	can	use	to	POST	messages.	The	semantics	of	this	link	are	described	in	Posting
Messages.

	msg-pull-subscriptions	.	This	is	a	URL	for	creating	subscribers	that	will	pull	from	a	topic.	The	semantics	of	this	link	are	described
in	Consuming	Messages	via	Pull.

	msg-push-subscriptions	.	This	is	a	URL	for	registering	other	URLs	you	want	the	Apache	ActiveMQ	Artemis	REST	server	to
push	messages	to.	The	semantics	of	this	link	are	described	in	Pushing	Messages.

Posting	Messages

This	chapter	discusses	the	protocol	for	posting	messages	to	a	queue	or	a	topic.	In	Apache	ActiveMQ	Artemis	REST	Interface	Basics,
you	saw	that	a	queue	or	topic	resource	publishes	variable	custom	headers	that	are	links	to	other	RESTful	resources.	The		msg-create	
header	is	a	URL	you	can	post	a	message	to.	Messages	are	published	to	a	queue	or	topic	by	sending	a	simple	HTTP	message	to	the	URL
published	by	the		msg-create		header.	The	HTTP	message	contains	whatever	content	you	want	to	publish	to	the	Apache	ActiveMQ
Artemis	destination.	Here's	an	example	scenario:

Note

You	can	also	post	messages	to	the	URL	template	found	in		msg-create-with-id	,	but	this	is	a	more	advanced	use-case	involving
duplicate	detection	that	we	will	discuss	later	in	this	section.

1.	 Obtain	the	starting		msg-create		header	from	the	queue	or	topic	resource.

HEAD	/queues/jms.queue.bar	HTTP/1.1

Host:	example.com

---	Response	---

HTTP/1.1	200	Ok

msg-create:	http://example.com/queues/jms.queue.bar/create

msg-create-with-id:	http://example.com/queues/jms.queue.bar/create/{id}

i.	 Do	a	POST	to	the	URL	contained	in	the		msg-create		header.

POST	/queues/jms.queue.bar/create

Host:	example.com

Content-Type:	application/xml

<order>

		<name>Bill</name>

		<item>iPhone4</name>

		<cost>$199.99</cost>

</order>

---	Response	---

HTTP/1.1	201	Created

msg-create-next:	http://example.com/queues/jms.queue.bar/create

Note

REST	Interface

182

You	can	use	the	"curl"	utility	to	test	this	easily.	Simply	execute	a	command	like	this:

curl	--verbose	--data	"123"	http://example.com/queues/jms.queue.bar/create

A	successful	response	will	return	a	201	response	code.	Also	notice	that	a		msg-create-next		response	header	is	sent	as	well.	You
must	use	this	URL	to	POST	your	next	message.

2.	 POST	your	next	message	to	the	queue	using	the	URL	returned	in	the		msg-create-next		header.

POST	/queues/jms.queue.bar/create

Host:	example.com

Content-Type:	application/xml

<order>

		<name>Monica</name>

		<item>iPad</item>

		<cost>$499.99</cost>

</order>

---	Response	--

HTTP/1.1	201	Created

msg-create-next:	http://example.com/queues/jms.queue.bar/create

Continue	using	the	new		msg-create-next		header	returned	with	each	response.

Warning

It	is	VERY	IMPORTANT	that	you	never	re-use	returned		msg-create-next		headers	to	post	new	messages.	If	the		dups-ok	
configuration	property	is	set	to		false		on	the	server	then	this	URL	will	be	uniquely	generated	for	each	message	and	used	for
duplicate	detection.	If	you	lose	the	URL	within	the		msg-create-next		header,	then	just	go	back	to	the	queue	or	topic	resource	to
get	the		msg-create		URL	again.

Duplicate	Detection

Sometimes	you	might	have	network	problems	when	posting	new	messages	to	a	queue	or	topic.	You	may	do	a	POST	and	never	receive	a
response.	Unfortunately,	you	don't	know	whether	or	not	the	server	received	the	message	and	so	a	re-post	of	the	message	might	cause
duplicates	to	be	posted	to	the	queue	or	topic.	By	default,	the	Apache	ActiveMQ	Artemis	REST	interface	is	configured	to	accept	and
post	duplicate	messages.	You	can	change	this	by	turning	on	duplicate	message	detection	by	setting	the		dups-ok		config	option	to		false	
as	described	in	Apache	ActiveMQ	Artemis	REST	Interface	Basics.	When	you	do	this,	the	initial	POST	to	the		msg-create		URL	will
redirect	you,	using	the	standard	HTTP	307	redirection	mechanism	to	a	unique	URL	to	POST	to.	All	other	interactions	remain	the	same
as	discussed	earlier.	Here's	an	example:

1.	 Obtain	the	starting		msg-create		header	from	the	queue	or	topic	resource.

HEAD	/queues/jms.queue.bar	HTTP/1.1

Host:	example.com

---	Response	---

HTTP/1.1	200	Ok

msg-create:	http://example.com/queues/jms.queue.bar/create

msg-create-with-id:	http://example.com/queues/jms.queue.bar/create/{id}

i.	 Do	a	POST	to	the	URL	contained	in	the		msg-create		header.

POST	/queues/jms.queue.bar/create

Host:	example.com

Content-Type:	application/xml

<order>

		<name>Bill</name>

		<item>iPhone4</name>

		<cost>$199.99</cost>

REST	Interface

183

</order>

---	Response	---

HTTP/1.1	307	Redirect

Location:	http://example.com/queues/jms.queue.bar/create/13582001787372

A	successful	response	will	return	a	307	response	code.	This	is	standard	HTTP	protocol.	It	is	telling	you	that	you	must	re-POST	to
the	URL	contained	within	the		Location		header.

2.	 re-POST	your	message	to	the	URL	provided	within	the		Location		header.

POST	/queues/jms.queue.bar/create/13582001787372

Host:	example.com

Content-Type:	application/xml

<order>

		<name>Bill</name>

		<item>iPhone4</name>

		<cost>$199.99</cost>

</order>

---	Response	--

HTTP/1.1	201	Created

msg-create-next:	http://example.com/queues/jms.queue.bar/create/13582001787373

You	should	receive	a	201	Created	response.	If	there	is	a	network	failure,	just	re-POST	to	the	Location	header.	For	new	messages,
use	the	returned		msg-create-next		header	returned	with	each	response.

3.	 POST	any	new	message	to	the	returned		msg-create-next		header.

POST	/queues/jms.queue.bar/create/13582001787373

Host:	example.com

Content-Type:	application/xml

<order>

		<name>Monica</name>

		<item>iPad</name>

		<cost>$499.99</cost>

</order>

---	Response	--

HTTP/1.1	201	Created

msg-create-next:	http://example.com/queues/jms.queue.bar/create/13582001787374

If	there	ever	is	a	network	problem,	just	repost	to	the	URL	provided	in	the		msg-create-next		header.

How	can	this	work?	As	you	can	see,	with	each	successful	response,	the	Apache	ActiveMQ	Artemis	REST	server	returns	a	uniquely
generated	URL	within	the	msg-create-next	header.	This	URL	is	dedicated	to	the	next	new	message	you	want	to	post.	Behind	the	scenes,
the	code	extracts	an	identify	from	the	URL	and	uses	Apache	ActiveMQ	Artemis's	duplicate	detection	mechanism	by	setting	the
	DUPLICATE_DETECTION_ID		property	of	the	JMS	message	that	is	actually	posted	to	the	system.

If	you	happen	to	use	the	same	ID	more	than	once	you'll	see	a	message	like	this	on	the	server:

WARN		[org.apache.activemq.artemis.core.server]	(Thread-3	(Apache	ActiveMQ	Artemis-remoting-threads-ActiveMQServerImpl::server

UUID=8d6be6f8-5e8b-11e2-80db-51bbde66f473-26319292-267207))	AMQ112098:	Duplicate	message	detected	-	message	will	not	be	routed

.	Message	information:

ServerMessage[messageID=20,priority=4,	bodySize=1500,expiration=0,	durable=true,	address=jms.queue.bar,properties=TypedPropert

ies[{http_content$type=application/x-www-form-urlencoded,	http_content$length=3,	postedAsHttpMessage=true,	_AMQ_DUPL_ID=42}]]@

12835058

An	alternative	to	this	approach	is	to	use	the		msg-create-with-id		header.	This	is	not	an	invokable	URL,	but	a	URL	template.	The	idea	is
that	the	client	provides	the		DUPLICATE_DETECTION_ID		and	creates	its	own		create-next		URL.	The		msg-create-with-id		header	looks	like
this	(you've	see	it	in	previous	examples,	but	we	haven't	used	it):

REST	Interface

184

msg-create-with-id:	http://example.com/queues/jms.queue.bar/create/{id}

You	see	that	it	is	a	regular	URL	appended	with	a		{id}	.	This		{id}		is	a	pattern	matching	substring.	A	client	would	generate	its
	DUPLICATE_DETECTION_ID		and	replace		{id}		with	that	generated	id,	then	POST	to	the	new	URL.	The	URL	the	client	creates	works
exactly	like	a		create-next		URL	described	earlier.	The	response	of	this	POST	would	also	return	a	new		msg-create-next		header.	The
client	can	continue	to	generate	its	own	DUPLICATE_DETECTION_ID,	or	use	the	new	URL	returned	via	the		msg-create-nex	t	header.

The	advantage	of	this	approach	is	that	the	client	does	not	have	to	repost	the	message.	It	also	only	has	to	come	up	with	a	unique
	DUPLICATE_DETECTION_ID		once.

Persistent	Messages

By	default,	posted	messages	are	not	durable	and	will	not	be	persisted	in	Apache	ActiveMQ	Artemis's	journal.	You	can	create	durable
messages	by	modifying	the	default	configuration	as	expressed	in	Chapter	2	so	that	all	messages	are	persisted	when	sent.	Alternatively,
you	can	set	a	URL	query	parameter	called		durable		to	true	when	you	post	your	messages	to	the	URLs	returned	in	the		msg-create	,
	msg-create-with-id	,	or		msg-create-next		headers.	here's	an	example	of	that.

POST	/queues/jms.queue.bar/create?durable=true

Host:	example.com

Content-Type:	application/xml

<order>

			<name>Bill</name>

			<item>iPhone4</item>

			<cost>$199.99</cost>

</order>

TTL,	Expiration	and	Priority

You	can	set	the	time	to	live,	expiration,	and/or	the	priority	of	the	message	in	the	queue	or	topic	by	setting	an	additional	query	parameter.
The		expiration		query	parameter	is	a	long	specifying	the	time	in	milliseconds	since	epoch	(a	long	date).	The		ttl		query	parameter	is	a
time	in	milliseconds	you	want	the	message	active.	The		priority		is	another	query	parameter	with	an	integer	value	between	0	and	9
expressing	the	priority	of	the	message.	i.e.:

POST	/queues/jms.queue.bar/create?expiration=30000&priority=3

Host:	example.com

Content-Type:	application/xml

<order>

			<name>Bill</name>

			<item>iPhone4</item>

			<cost>$199.99</cost>

</order>

Consuming	Messages	via	Pull

There	are	two	different	ways	to	consume	messages	from	a	topic	or	queue.	You	can	wait	and	have	the	messaging	server	push	them	to
you,	or	you	can	continuously	poll	the	server	yourself	to	see	if	messages	are	available.	This	chapter	discusses	the	latter.	Consuming
messages	via	a	pull	works	almost	identically	for	queues	and	topics	with	some	minor,	but	important	caveats.	To	start	consuming	you
must	create	a	consumer	resource	on	the	server	that	is	dedicated	to	your	client.	Now,	this	pretty	much	breaks	the	stateless	principle	of
REST,	but	after	much	prototyping,	this	is	the	best	way	to	work	most	effectively	with	Apache	ActiveMQ	Artemis	through	a	REST
interface.

You	create	consumer	resources	by	doing	a	simple	POST	to	the	URL	published	by	the		msg-pull-consumers		response	header	if	you	are
interacting	with	a	queue,	the		msg-pull-subscribers		response	header	if	you're	interacting	with	a	topic.	These	headers	are	provided	by
the	main	queue	or	topic	resource	discussed	in	Apache	ActiveMQ	Artemis	REST	Interface	Basics.	Doing	an	empty	POST	to	one	of

REST	Interface

185

these	URLs	will	create	a	consumer	resource	that	follows	an	auto-acknowledge	protocol	and,	if	you	are	interacting	with	a	topic,	creates	a
temporarily	subscription	to	the	topic.	If	you	want	to	use	the	acknowledgement	protocol	and/or	create	a	durable	subscription	(topics
only),	then	you	must	use	the	form	parameters	(application/x-www-form-urlencoded)	described	below.

	autoAck	.	A	value	of		true		or		false		can	be	given.	This	defaults	to		true		if	you	do	not	pass	this	parameter.

	durable	.	A	value	of		true		or		false		can	be	given.	This	defaults	to		false		if	you	do	not	pass	this	parameter.	Only	available	on
topics.	This	specifies	whether	you	want	a	durable	subscription	or	not.	A	durable	subscription	persists	through	server	restart.

	name	.	This	is	the	name	of	the	durable	subscription.	If	you	do	not	provide	this	parameter,	the	name	will	be	automatically	generated
by	the	server.	Only	usable	on	topics.

	selector	.	This	is	an	optional	JMS	selector	string.	The	Apache	ActiveMQ	Artemis	REST	interface	adds	HTTP	headers	to	the
JMS	message	for	REST	produced	messages.	HTTP	headers	are	prefixed	with	"http_"	and	every	'-'	character	is	converted	to	a	'$'.

	idle-timeout	.	For	a	topic	subscription,	idle	time	in	milliseconds	in	which	the	consumer	connections	will	be	closed	if	idle.

	delete-when-idle	.	Boolean	value,	If	true,	a	topic	subscription	will	be	deleted	(even	if	it	is	durable)	when	the	idle	timeout	is
reached.

Note

If	you	have	multiple	pull-consumers	active	at	the	same	time	on	the	same	destination	be	aware	that	unless	the		consumer-window-
size		is	0	then	one	consumer	might	buffer	messages	while	the	other	consumer	gets	none.

Auto-Acknowledge

This	section	focuses	on	the	auto-acknowledge	protocol	for	consuming	messages	via	a	pull.	Here's	a	list	of	the	response	headers	and
URLs	you'll	be	interested	in.

	msg-pull-consumers	.	The	URL	of	a	factory	resource	for	creating	queue	consumer	resources.	You	will	pull	from	these	created
resources.

	msg-pull-subscriptions	.	The	URL	of	a	factory	resource	for	creating	topic	subscription	resources.	You	will	pull	from	the	created
resources.

	msg-consume-next	.	The	URL	you	will	pull	the	next	message	from.	This	is	returned	with	every	response.

	msg-consumer	.	This	is	a	URL	pointing	back	to	the	consumer	or	subscription	resource	created	for	the	client.

Creating	an	Auto-Ack	Consumer	or	Subscription

Here	is	an	example	of	creating	an	auto-acknowledged	queue	pull	consumer.

1.	 Find	the	pull-consumers	URL	by	doing	a	HEAD	or	GET	request	to	the	base	queue	resource.

HEAD	/queues/jms.queue.bar	HTTP/1.1

Host:	example.com

---	Response	---

HTTP/1.1	200	Ok

msg-create:	http://example.com/queues/jms.queue.bar/create

msg-pull-consumers:	http://example.com/queues/jms.queue.bar/pull-consumers

msg-push-consumers:	http://example.com/queues/jms.queue.bar/push-consumers

i.	 Next	do	an	empty	POST	to	the	URL	returned	in	the		msg-pull-consumers		header.

POST	/queues/jms.queue.bar/pull-consumers	HTTP/1.1

Host:	example.com

---	response	---

HTTP/1.1	201	Created

Location:	http://example.com/queues/jms.queue.bar/pull-consumers/auto-ack/333

msg-consume-next:	http://example.com/queues/jms.queue.bar/pull-consumers/auto-ack/333/consume-next-1

REST	Interface

186

The		Location		header	points	to	the	JMS	consumer	resource	that	was	created	on	the	server.	It	is	good	to	remember	this	URL,
although,	as	you'll	see	later,	it	is	transmitted	with	each	response	just	to	remind	you.

Creating	an	auto-acknowledged	consumer	for	a	topic	is	pretty	much	the	same.	Here's	an	example	of	creating	a	durable	auto-
acknowledged	topic	pull	subscription.

1.	 Find	the		pull-subscriptions		URL	by	doing	a	HEAD	or	GET	request	to	the	base	topic	resource

HEAD	/topics/jms.topic.bar	HTTP/1.1

Host:	example.com

---	Response	---

HTTP/1.1	200	Ok

msg-create:	http://example.com/topics/jms.topic.foo/create

msg-pull-subscriptions:	http://example.com/topics/jms.topic.foo/pull-subscriptions

msg-push-subscriptions:	http://example.com/topics/jms.topic.foo/push-subscriptions

i.	 Next	do	a	POST	to	the	URL	returned	in	the		msg-pull-subscriptions		header	passing	in	a		true		value	for	the		durable		form
parameter.

POST	/topics/jms.topic.foo/pull-subscriptions	HTTP/1.1

Host:	example.com

Content-Type:	application/x-www-form-urlencoded

durable=true

---	Response	---

HTTP/1.1	201	Created

Location:	http://example.com/topics/jms.topic.foo/pull-subscriptions/auto-ack/222

msg-consume-next:

http://example.com/topics/jms.topic.foo/pull-subscriptions/auto-ack/222/consume-next-1

The		Location		header	points	to	the	JMS	subscription	resource	that	was	created	on	the	server.	It	is	good	to	remember	this	URL,
although,	as	you'll	see	later,	it	is	transmitted	with	each	response	just	to	remind	you.

Consuming	Messages

After	you	have	created	a	consumer	resource,	you	are	ready	to	start	pulling	messages	from	the	server.	Notice	that	when	you	created	the
consumer	for	either	the	queue	or	topic,	the	response	contained	a		msg-consume-next		response	header.	POST	to	the	URL	contained
within	this	header	to	consume	the	next	message	in	the	queue	or	topic	subscription.	A	successful	POST	causes	the	server	to	extract	a
message	from	the	queue	or	topic	subscription,	acknowledge	it,	and	return	it	to	the	consuming	client.	If	there	are	no	messages	in	the	queue
or	topic	subscription,	a	503	(Service	Unavailable)	HTTP	code	is	returned.

Warning

For	both	successful	and	unsuccessful	posts	to	the	msg-consume-next	URL,	the	response	will	contain	a	new	msg-consume-next
header.	You	must	ALWAYS	use	this	new	URL	returned	within	the	new	msg-consume-next	header	to	consume	new	messages.

Here's	an	example	of	pulling	multiple	messages	from	the	consumer	resource.

1.	 Do	a	POST	on	the	msg-consume-next	URL	that	was	returned	with	the	consumer	or	subscription	resource	discussed	earlier.

POST	/queues/jms.queue.bar/pull-consumers/consume-next-1

Host:	example.com

---	Response	---

HTTP/1.1	200	Ok

Content-Type:	application/xml

msg-consume-next:	http://example.com/queues/jms.queue.bar/pull-consumers/333/consume-next-2

msg-consumer:	http://example.com/queues/jms.queue.bar/pull-consumers/333

<order>...</order>

REST	Interface

187

The	POST	returns	the	message	consumed	from	the	queue.	It	also	returns	a	new	msg-consume-next	link.	Use	this	new	link	to	get	the
next	message.	Notice	also	a	msg-consumer	response	header	is	returned.	This	is	a	URL	that	points	back	to	the	consumer	or
subscription	resource.	You	will	need	that	to	clean	up	your	connection	after	you	are	finished	using	the	queue	or	topic.

2.	 The	POST	returns	the	message	consumed	from	the	queue.	It	also	returns	a	new	msg-consume-next	link.	Use	this	new	link	to	get	the
next	message.

POST	/queues/jms.queue.bar/pull-consumers/consume-next-2

Host:	example.com

---	Response	---

Http/1.1	503	Service	Unavailable

Retry-After:	5

msg-consume-next:	http://example.com/queues/jms.queue.bar/pull-consumers/333/consume-next-2

In	this	case,	there	are	no	messages	in	the	queue,	so	we	get	a	503	response	back.	As	per	the	HTTP	1.1	spec,	a	503	response	may
return	a	Retry-After	head	specifying	the	time	in	seconds	that	you	should	retry	a	post.	Also	notice,	that	another	new	msg-consume-
next	URL	is	present.	Although	it	probably	is	the	same	URL	you	used	last	post,	get	in	the	habit	of	using	URLs	returned	in	response
headers	as	future	versions	of	Apache	ActiveMQ	Artemis	REST	might	be	redirecting	you	or	adding	additional	data	to	the	URL	after
timeouts	like	this.

3.	 POST	to	the	URL	within	the	last		msg-consume-next		to	get	the	next	message.

POST	/queues/jms.queue.bar/pull-consumers/consume-next-2

Host:	example.com

---	Response	---

HTTP/1.1	200	Ok

Content-Type:	application/xml

msg-consume-next:	http://example.com/queues/jms.queue.bar/pull-consumers/333/consume-next-3

<order>...</order>

Recovering	From	Network	Failures

If	you	experience	a	network	failure	and	do	not	know	if	your	post	to	a	msg-consume-next	URL	was	successful	or	not,	just	re-do	your
POST.	A	POST	to	a	msg-consume-next	URL	is	idempotent,	meaning	that	it	will	return	the	same	result	if	you	execute	on	any	one	msg-
consume-next	URL	more	than	once.	Behind	the	scenes,	the	consumer	resource	caches	the	last	consumed	message	so	that	if	there	is	a
message	failure	and	you	do	a	re-post,	the	cached	last	message	will	be	returned	(along	with	a	new	msg-consume-next	URL).	This	is	the
reason	why	the	protocol	always	requires	you	to	use	the	next	new	msg-consume-next	URL	returned	with	each	response.	Information
about	what	state	the	client	is	in	is	embedded	within	the	actual	URL.

Recovering	From	Client	or	Server	Crashes

If	the	server	crashes	and	you	do	a	POST	to	the	msg-consume-next	URL,	the	server	will	return	a	412	(Preconditions	Failed)	response
code.	This	is	telling	you	that	the	URL	you	are	using	is	out	of	sync	with	the	server.	The	response	will	contain	a	new	msg-consume-next
header	to	invoke	on.

If	the	client	crashes	there	are	multiple	ways	you	can	recover.	If	you	have	remembered	the	last	msg-consume-next	link,	you	can	just	re-
POST	to	it.	If	you	have	remembered	the	consumer	resource	URL,	you	can	do	a	GET	or	HEAD	request	to	obtain	a	new	msg-consume-
next	URL.	If	you	have	created	a	topic	subscription	using	the	name	parameter	discussed	earlier,	you	can	re-create	the	consumer.	Re-
creation	will	return	a	msg-consume-next	URL	you	can	use.	If	you	cannot	do	any	of	these	things,	you	will	have	to	create	a	new	consumer.

The	problem	with	the	auto-acknowledge	protocol	is	that	if	the	client	or	server	crashes,	it	is	possible	for	you	to	skip	messages.	The
scenario	would	happen	if	the	server	crashes	after	auto-acknowledging	a	message	and	before	the	client	receives	the	message.	If	you	want
more	reliable	messaging,	then	you	must	use	the	acknowledgement	protocol.

Manual	Acknowledgement

REST	Interface

188

The	manual	acknowledgement	protocol	is	similar	to	the	auto-ack	protocol	except	there	is	an	additional	round	trip	to	the	server	to	tell	it
that	you	have	received	the	message	and	that	the	server	can	internally	ack	the	message.	Here	is	a	list	of	the	response	headers	you	will	be
interested	in.

	msg-pull-consumers	.	The	URL	of	a	factory	resource	for	creating	queue	consumer	resources.	You	will	pull	from	these	created
resources

	msg-pull-subscriptions	.	The	URL	of	a	factory	resource	for	creating	topic	subscription	resources.	You	will	pull	from	the	created
resources.

	msg-acknowledge-next	.	URL	used	to	obtain	the	next	message	in	the	queue	or	topic	subscription.	It	does	not	acknowledge	the
message	though.

	msg-acknowledgement	.	URL	used	to	acknowledge	a	message.

	msg-consumer	.	This	is	a	URL	pointing	back	to	the	consumer	or	subscription	resource	created	for	the	client.

Creating	manually-acknowledged	consumers	or	subscriptions

Here	is	an	example	of	creating	an	auto-acknowledged	queue	pull	consumer.

1.	 Find	the	pull-consumers	URL	by	doing	a	HEAD	or	GET	request	to	the	base	queue	resource.

HEAD	/queues/jms.queue.bar	HTTP/1.1

Host:	example.com

---	Response	---

HTTP/1.1	200	Ok

msg-create:	http://example.com/queues/jms.queue.bar/create

msg-pull-consumers:	http://example.com/queues/jms.queue.bar/pull-consumers

msg-push-consumers:	http://example.com/queues/jms.queue.bar/push-consumers

i.	 Next	do	a	POST	to	the	URL	returned	in	the		msg-pull-consumers		header	passing	in	a		false		value	to	the		autoAck		form
parameter	.

POST	/queues/jms.queue.bar/pull-consumers	HTTP/1.1

Host:	example.com

Content-Type:	application/x-www-form-urlencoded

autoAck=false

---	response	---

HTTP/1.1	201	Created

Location:	http://example.com/queues/jms.queue.bar/pull-consumers/acknowledged/333

msg-acknowledge-next:	http://example.com/queues/jms.queue.bar/pull-consumers/acknowledged/333/acknowledge-next-1

The		Location		header	points	to	the	JMS	consumer	resource	that	was	created	on	the	server.	It	is	good	to	remember	this	URL,
although,	as	you'll	see	later,	it	is	transmitted	with	each	response	just	to	remind	you.

Creating	a	manually-acknowledged	consumer	for	a	topic	is	pretty	much	the	same.	Here's	an	example	of	creating	a	durable	manually-
acknowledged	topic	pull	subscription.

1.	 Find	the		pull-subscriptions		URL	by	doing	a	HEAD	or	GET	request	to	the	base	topic	resource

HEAD	/topics/jms.topic.bar	HTTP/1.1

Host:	example.com

---	Response	---

HTTP/1.1	200	Ok

msg-create:	http://example.com/topics/jms.topic.foo/create

msg-pull-subscriptions:	http://example.com/topics/jms.topic.foo/pull-subscriptions

msg-push-subscriptions:	http://example.com/topics/jms.topic.foo/push-subscriptions

REST	Interface

189

i.	 Next	do	a	POST	to	the	URL	returned	in	the		msg-pull-subscriptions		header	passing	in	a		true		value	for	the		durable		form
parameter	and	a		false		value	to	the		autoAck		form	parameter.

POST	/topics/jms.topic.foo/pull-subscriptions	HTTP/1.1

Host:	example.com

Content-Type:	application/x-www-form-urlencoded

durable=true&autoAck=false

---	Response	---

HTTP/1.1	201	Created

Location:	http://example.com/topics/jms.topic.foo/pull-subscriptions/acknowledged/222

msg-acknowledge-next:

http://example.com/topics/jms.topic.foo/pull-subscriptions/acknowledged/222/consume-next-1

The		Location		header	points	to	the	JMS	subscription	resource	that	was	created	on	the	server.	It	is	good	to	remember	this	URL,
although,	as	you'll	see	later,	it	is	transmitted	with	each	response	just	to	remind	you.

Consuming	and	Acknowledging	a	Message

After	you	have	created	a	consumer	resource,	you	are	ready	to	start	pulling	messages	from	the	server.	Notice	that	when	you	created	the
consumer	for	either	the	queue	or	topic,	the	response	contained	a		msg-acknowledge-next		response	header.	POST	to	the	URL	contained
within	this	header	to	consume	the	next	message	in	the	queue	or	topic	subscription.	If	there	are	no	messages	in	the	queue	or	topic
subscription,	a	503	(Service	Unavailable)	HTTP	code	is	returned.	A	successful	POST	causes	the	server	to	extract	a	message	from	the
queue	or	topic	subscription	and	return	it	to	the	consuming	client.	It	does	not	acknowledge	the	message	though.	The	response	will
contain	the		acknowledgement		header	which	you	will	use	to	acknowledge	the	message.

Here's	an	example	of	pulling	multiple	messages	from	the	consumer	resource.

1.	 Do	a	POST	on	the	msg-acknowledge-next	URL	that	was	returned	with	the	consumer	or	subscription	resource	discussed	earlier.

POST	/queues/jms.queue.bar/pull-consumers/consume-next-1

Host:	example.com

---	Response	---

HTTP/1.1	200	Ok

Content-Type:	application/xml

msg-acknowledgement:

http://example.com/queues/jms.queue.bar/pull-consumers/333/acknowledgement/2

msg-consumer:	http://example.com/queues/jms.queue.bar/pull-consumers/333

<order>...</order>

The	POST	returns	the	message	consumed	from	the	queue.	It	also	returns	a	msg-acknowledgemen	t	link.	You	will	use	this	new	link	to
acknowledge	the	message.	Notice	also	a		msg-consumer		response	header	is	returned.	This	is	a	URL	that	points	back	to	the	consumer
or	subscription	resource.	You	will	need	that	to	clean	up	your	connection	after	you	are	finished	using	the	queue	or	topic.

2.	 Acknowledge	or	unacknowledge	the	message	by	doing	a	POST	to	the	URL	contained	in	the		msg-acknowledgement		header.	You	must
pass	an		acknowledge		form	parameter	set	to		true		or		false		depending	on	whether	you	want	to	acknowledge	or	unacknowledge
the	message	on	the	server.

POST	/queues/jms.queue.bar/pull-consumers/acknowledgement/2

Host:	example.com

Content-Type:	application/x-www-form-urlencoded

acknowledge=true

---	Response	---

Http/1.1	200	Ok

msg-acknowledge-next:

http://example.com/queues/jms.queue.bar/pull-consumers/333/acknowledge-next-2

REST	Interface

190

Whether	you	acknowledge	or	unacknowledge	the	message,	the	response	will	contain	a	new	msg-acknowledge-next	header	that	you
must	use	to	obtain	the	next	message.

Recovering	From	Network	Failures

If	you	experience	a	network	failure	and	do	not	know	if	your	post	to	a		msg-acknowledge-next		or		msg-acknowledgement		URL	was
successful	or	not,	just	re-do	your	POST.	A	POST	to	one	of	these	URLs	is	idempotent,	meaning	that	it	will	return	the	same	result	if	you
re-post.	Behind	the	scenes,	the	consumer	resource	keeps	track	of	its	current	state.	If	the	last	action	was	a	call	to	msg-acknowledge-next	,
it	will	have	the	last	message	cached,	so	that	if	a	re-post	is	done,	it	will	return	the	message	again.	Same	goes	with	re-posting	to		msg-
acknowledgement	.	The	server	remembers	its	last	state	and	will	return	the	same	results.	If	you	look	at	the	URLs	you'll	see	that	they
contain	information	about	the	expected	current	state	of	the	server.	This	is	how	the	server	knows	what	the	client	is	expecting.

Recovering	From	Client	or	Server	Crashes

If	the	server	crashes	and	while	you	are	doing	a	POST	to	the		msg-acknowledge-next		URL,	just	re-post.	Everything	should	reconnect	all
right.	On	the	other	hand,	if	the	server	crashes	while	you	are	doing	a	POST	to	msg-acknowledgement	,	the	server	will	return	a	412
(Preconditions	Failed)	response	code.	This	is	telling	you	that	the	URL	you	are	using	is	out	of	sync	with	the	server	and	the	message	you
are	acknowledging	was	probably	re-enqueued.	The	response	will	contain	a	new		msg-acknowledge-next		header	to	invoke	on.

As	long	as	you	have	"bookmarked"	the	consumer	resource	URL	(returned	from		Location		header	on	a	create,	or	the		msg-consumer	
header),	you	can	recover	from	client	crashes	by	doing	a	GET	or	HEAD	request	on	the	consumer	resource	to	obtain	what	state	you	are
in.	If	the	consumer	resource	is	expecting	you	to	acknowledge	a	message,	it	will	return	a		msg-acknowledgement		header	in	the	response.	If
the	consumer	resource	is	expecting	you	to	pull	for	the	next	message,	the		msg-acknowledge-next		header	will	be	in	the	response.	With
manual	acknowledgement	you	are	pretty	much	guaranteed	to	avoid	skipped	messages.	For	topic	subscriptions	that	were	created	with	a
name	parameter,	you	do	not	have	to	"bookmark"	the	returned	URL.	Instead,	you	can	re-create	the	consumer	resource	with	the	same
exact	name.	The	response	will	contain	the	same	information	as	if	you	did	a	GET	or	HEAD	request	on	the	consumer	resource.

Blocking	Pulls	with	Accept-Wait

Unless	your	queue	or	topic	has	a	high	rate	of	message	flowing	though	it,	if	you	use	the	pull	protocol,	you're	going	to	be	receiving	a	lot	of
503	responses	as	you	continuously	pull	the	server	for	new	messages.	To	alleviate	this	problem,	the	Apache	ActiveMQ	Artemis	REST
interface	provides	the		Accept-Wait		header.	This	is	a	generic	HTTP	request	header	that	is	a	hint	to	the	server	for	how	long	the	client	is
willing	to	wait	for	a	response	from	the	server.	The	value	of	this	header	is	the	time	in	seconds	the	client	is	willing	to	block	for.	You	would
send	this	request	header	with	your	pull	requests.	Here's	an	example:

POST	/queues/jms.queue.bar/pull-consumers/consume-next-2

Host:	example.com

Accept-Wait:	30

---	Response	---

HTTP/1.1	200	Ok

Content-Type:	application/xml

msg-consume-next:	http://example.com/queues/jms.queue.bar/pull-consumers/333/consume-next-3

<order>...</order>

In	this	example,	we're	posting	to	a	msg-consume-next	URL	and	telling	the	server	that	we	would	be	willing	to	block	for	30	seconds.

Clean	Up	Your	Consumers!

When	the	client	is	done	with	its	consumer	or	topic	subscription	it	should	do	an	HTTP	DELETE	call	on	the	consumer	URL	passed	back
from	the	Location	header	or	the	msg-consumer	response	header.	The	server	will	time	out	a	consumer	with	the	value	of		consumer-
session-timeout-seconds		configured	from	REST	configuration,	so	you	don't	have	to	clean	up	if	you	don't	want	to,	but	if	you	are	a	good
kid,	you	will	clean	up	your	messes.	A	consumer	timeout	for	durable	subscriptions	will	not	delete	the	underlying	durable	JMS
subscription	though,	only	the	server-side	consumer	resource	(and	underlying	JMS	session).

REST	Interface

191

Pushing	Messages

You	can	configure	the	Apache	ActiveMQ	Artemis	REST	server	to	push	messages	to	a	registered	URL	either	remotely	through	the	REST
interface,	or	by	creating	a	pre-configured	XML	file	for	the	Apache	ActiveMQ	Artemis	REST	server	to	load	at	boot	time.

The	Queue	Push	Subscription	XML

Creating	a	push	consumer	for	a	queue	first	involves	creating	a	very	simple	XML	document.	This	document	tells	the	server	if	the	push
subscription	should	survive	server	reboots	(is	it	durable).	It	must	provide	a	URL	to	ship	the	forwarded	message	to.	Finally,	you	have	to
provide	authentication	information	if	the	final	endpoint	requires	authentication.	Here's	a	simple	example:

<push-registration>

			<durable>false</durable>

			<selector><![CDATA[

			SomeAttribute	>	1

]]>

			</selector>

			<link	rel="push"	href="http://somewhere.com"	type="application/json"	method="PUT"/>

			<maxRetries>5</maxRetries>

			<retryWaitMillis>1000</retryWaitMillis>

			<disableOnFailure>true</disableOnFailure>

</push-registration>

The		durable		element	specifies	whether	the	registration	should	be	saved	to	disk	so	that	if	there	is	a	server	restart,	the	push	subscription
will	still	work.	This	element	is	not	required.	If	left	out	it	defaults	to	false	.	If	durable	is	set	to	true,	an	XML	file	for	the	push
subscription	will	be	created	within	the	directory	specified	by	the		queue-push-store-dir		config	variable	defined	in	Chapter	2	(topic-
push-store-dir		for	topics).

The		selector		element	is	optional	and	defines	a	JMS	message	selector.	You	should	enclose	it	within	CDATA	blocks	as	some	of	the
selector	characters	are	illegal	XML.

The		maxRetries		element	specifies	how	many	times	a	the	server	will	try	to	push	a	message	to	a	URL	if	there	is	a	connection	failure.

The		retryWaitMillis		element	specifies	how	long	to	wait	before	performing	a	retry.

The		disableOnFailure		element,	if	set	to	true,	will	disable	the	registration	if	all	retries	have	failed.	It	will	not	disable	the	connection	on
non-connection-failure	issues	(like	a	bad	request	for	instance).	In	these	cases,	the	dead	letter	queue	logic	of	Apache	ActiveMQ	Artemis
will	take	over.

The		link		element	specifies	the	basis	of	the	interaction.	The		href		attribute	contains	the	URL	you	want	to	interact	with.	It	is	the	only
required	attribute.	The		type		attribute	specifies	the	content-type	of	what	the	push	URL	is	expecting.	The		method		attribute	defines
what	HTTP	method	the	server	will	use	when	it	sends	the	message	to	the	server.	If	it	is	not	provided	it	defaults	to	POST.	The		rel	
attribute	is	very	important	and	the	value	of	it	triggers	different	behavior.	Here's	the	values	a	rel	attribute	can	have:

	destination	.	The	href	URL	is	assumed	to	be	a	queue	or	topic	resource	of	another	Apache	ActiveMQ	Artemis	REST	server.	The
push	registration	will	initially	do	a	HEAD	request	to	this	URL	to	obtain	a	msg-create-with-id	header.	It	will	use	this	header	to	push
new	messages	to	the	Apache	ActiveMQ	Artemis	REST	endpoint	reliably.	Here's	an	example:

<push-registration>

			<link	rel="destination"	href="http://somewhere.com/queues/jms.queue.foo"/>

</push-registration>

	template	.	In	this	case,	the	server	is	expecting	the	link	element's	href	attribute	to	be	a	URL	expression.	The	URL	expression
must	have	one	and	only	one	URL	parameter	within	it.	The	server	will	use	a	unique	value	to	create	the	endpoint	URL.	Here's
an	example:

<push-registration>

			<link	rel="template"	href="http://somewhere.com/resources/{id}/messages"	method="PUT"/>

</push-registration>

REST	Interface

192

In	this	example,	the	{id}	sub-string	is	the	one	and	only	one	URL	parameter.

	user	defined	.	If	the	rel	attributes	is	not	destination	or	template	(or	is	empty	or	missing),	then	the	server	will	send	an	HTTP
message	to	the	href	URL	using	the	HTTP	method	defined	in	the	method	attribute.	Here's	an	example:

<push-registration>

			<link	href="http://somewhere.com"	type="application/json"	method="PUT"/>

</push-registration>

The	Topic	Push	Subscription	XML

The	push	XML	for	a	topic	is	the	same	except	the	root	element	is	push-topic-registration.	(Also	remember	the		selector		element	is
optional).	The	rest	of	the	document	is	the	same.	Here's	an	example	of	a	template	registration:

<push-topic-registration>

			<durable>true</durable>

			<selector><![CDATA[

			SomeAttribute	>	1

]]>

			</selector>

			<link	rel="template"	href="http://somewhere.com/resources/{id}/messages"	method="POST"/>

</push-topic	registration>

Creating	a	Push	Subscription	at	Runtime

Creating	a	push	subscription	at	runtime	involves	getting	the	factory	resource	URL	from	the	msg-push-consumers	header,	if	the
destination	is	a	queue,	or	msg-push-subscriptions	header,	if	the	destination	is	a	topic.	Here's	an	example	of	creating	a	push	registration
for	a	queue:

1.	 First	do	a	HEAD	request	to	the	queue	resource:

HEAD	/queues/jms.queue.bar	HTTP/1.1

Host:	example.com

---	Response	---

HTTP/1.1	200	Ok

msg-create:	http://example.com/queues/jms.queue.bar/create

msg-pull-consumers:	http://example.com/queues/jms.queue.bar/pull-consumers

msg-push-consumers:	http://example.com/queues/jms.queue.bar/push-consumers

i.	 Next	POST	your	subscription	XML	to	the	URL	returned	from	msg-push-consumers	header

POST	/queues/jms.queue.bar/push-consumers

Host:	example.com

Content-Type:	application/xml

<push-registration>

		<link	rel="destination"	href="http://somewhere.com/queues/jms.queue.foo"/>

</push-registration>

---	Response	---

HTTP/1.1	201	Created

Location:	http://example.com/queues/jms.queue.bar/push-consumers/1-333-1212

The	Location	header	contains	the	URL	for	the	created	resource.	If	you	want	to	unregister	this,	then	do	a	HTTP	DELETE	on	this
URL.

Here's	an	example	of	creating	a	push	registration	for	a	topic:

1.	 First	do	a	HEAD	request	to	the	topic	resource:

HEAD	/topics/jms.topic.bar	HTTP/1.1

REST	Interface

193

Host:	example.com

---	Response	---

HTTP/1.1	200	Ok

msg-create:	http://example.com/topics/jms.topic.bar/create

msg-pull-subscriptions:	http://example.com/topics/jms.topic.bar/pull-subscriptions

msg-push-subscriptions:	http://example.com/topics/jms.topic.bar/push-subscriptions

i.	 Next	POST	your	subscription	XML	to	the	URL	returned	from	msg-push-subscriptions	header

POST	/topics/jms.topic.bar/push-subscriptions

Host:	example.com

Content-Type:	application/xml

<push-registration>

		<link	rel="template"	href="http://somewhere.com/resources/{id}"/>

</push-registration>

---	Response	---

HTTP/1.1	201	Created

Location:	http://example.com/topics/jms.topic.bar/push-subscriptions/1-333-1212

The	Location	header	contains	the	URL	for	the	created	resource.	If	you	want	to	unregister	this,	then	do	a	HTTP	DELETE	on	this
URL.

Creating	a	Push	Subscription	by	Hand

You	can	create	a	push	XML	file	yourself	if	you	do	not	want	to	go	through	the	REST	interface	to	create	a	push	subscription.	There	is
some	additional	information	you	need	to	provide	though.	First,	in	the	root	element,	you	must	define	a	unique	id	attribute.	You	must	also
define	a	destination	element	to	specify	the	queue	you	should	register	a	consumer	with.	For	a	topic,	the	destination	element	is	the	name
of	the	subscription	that	will	be	created.	For	a	topic,	you	must	also	specify	the	topic	name	within	the	topic	element.

Here's	an	example	of	a	hand-created	queue	registration.	This	file	must	go	in	the	directory	specified	by	the	queue-push-store-dir	config
variable	defined	in	Chapter	2:

<push-registration	id="111">

			<destination>jms.queue.bar</destination>

			<durable>true</durable>

			<link	rel="template"	href="http://somewhere.com/resources/{id}/messages"	method="PUT"/>

</push-registration>

Here's	an	example	of	a	hand-created	topic	registration.	This	file	must	go	in	the	directory	specified	by	the	topic-push-store-dir	config
variable	defined	in	Chapter	2:

<push-topic-registration	id="112">

			<destination>my-subscription-1</destination

			<durable>true</durable>

			<link	rel="template"	href="http://somewhere.com/resources/{id}/messages"	method="PUT"/>

			<topic>jms.topic.foo</topic>

</push-topic-registration>

Pushing	to	Authenticated	Servers

Push	subscriptions	only	support	BASIC	and	DIGEST	authentication	out	of	the	box.	Here	is	an	example	of	adding	BASIC
authentication:

<push-topic-registration>

			<durable>true</durable>

			<link	rel="template"	href="http://somewhere.com/resources/{id}/messages"	method="POST"/>

			<authentication>

						<basic-auth>

									<username>guest</username>

REST	Interface

194

									<password>geheim</password>

						</basic-auth>

			</authentication>

</push-topic	registration>

For	DIGEST,	just	replace	basic-auth	with	digest-auth.

For	other	authentication	mechanisms,	you	can	register	headers	you	want	transmitted	with	each	request.	Use	the	header	element	with	the
name	attribute	representing	the	name	of	the	header.	Here's	what	custom	headers	might	look	like:

<push-topic-registration>

			<durable>true</durable>

			<link	rel="template"	href="http://somewhere.com/resources/{id}/messages"	method="POST"/>

			<header	name="secret-header">jfdiwe3321</header>

</push-topic	registration>

Creating	Destinations
You	can	create	a	durable	queue	or	topic	through	the	REST	interface.	Currently	you	cannot	create	a	temporary	queue	or	topic.	To	create	a
queue	you	do	a	POST	to	the	relative	URL	/queues	with	an	XML	representation	of	the	queue.	The	XML	syntax	is	the	same	queue
syntax	that	you	would	specify	in	activemq-jms.xml	if	you	were	creating	a	queue	there.	For	example:

POST	/queues

Host:	example.com

Content-Type:	application/activemq.jms.queue+xml

<queue	name="testQueue">

			<durable>true</durable>

</queue>

---	Response	---

HTTP/1.1	201	Created

Location:	http://example.com/queues/jms.queue.testQueue

Notice	that	the	Content-Type	is	application/activemq.jms.queue+xml.

Here's	what	creating	a	topic	would	look	like:

POST	/topics

Host:	example.com

Content-Type:	application/activemq.jms.topic+xml

<topic	name="testTopic">

</topic>

---	Response	---

HTTP/1.1	201	Created

Location:	http://example.com/topics/jms.topic.testTopic

Securing	the	Apache	ActiveMQ	Artemis	REST	Interface

Within	Wildfly	Application	server

Securing	the	Apache	ActiveMQ	Artemis	REST	interface	is	very	simple	with	the	Wildfly	Application	Server.	You	turn	on	authentication
for	all	URLs	within	your	WAR's	web.xml,	and	let	the	user	Principal	to	propagate	to	Apache	ActiveMQ	Artemis.	This	only	works	if
you	are	using	the	JAASSecurityManager	with	Apache	ActiveMQ	Artemis.	See	the	Apache	ActiveMQ	Artemis	documentation	for	more
details.

Security	in	other	environments

REST	Interface

195

To	secure	the	Apache	ActiveMQ	Artemis	REST	interface	in	other	environments	you	must	role	your	own	security	by	specifying
security	constraints	with	your	web.xml	for	every	path	of	every	queue	and	topic	you	have	deployed.	Here	is	a	list	of	URI	patterns:

Post Description

/queues secure	the	POST	operation	to	secure	queue	creation

/queues/{queue-name}/create/ secure	this	URL	pattern	for	producing	messages.

/queues/{queue-name}/pull-consumers/ secure	this	URL	pattern	for	pushing	messages.

/queues/{queue-name}/push-consumers/ secure	the	POST	operation	to	secure	topic	creation

/topics secure	the	POST	operation	to	secure	topic	creation

/topics/{topic-name} secure	the	GET	HEAD	operation	to	getting	information	about	the	topic.

/topics/{topic-name}/create/ secure	this	URL	pattern	for	producing	messages

/topics/{topic-name}/pull-subscriptions/ secure	this	URL	pattern	for	pulling	messages

/topics/{topic-name}/push-subscriptions/ secure	this	URL	pattern	for	pushing	messages

Mixing	JMS	and	REST

The	Apache	ActiveMQ	Artemis	REST	interface	supports	mixing	JMS	and	REST	producers	and	consumers.	You	can	send	an
ObjectMessage	through	a	JMS	Producer,	and	have	a	REST	client	consume	it.	You	can	have	a	REST	client	POST	a	message	to	a	topic
and	have	a	JMS	Consumer	receive	it.	Some	simple	transformations	are	supported	if	you	have	the	correct	RESTEasy	providers	installed.

JMS	Producers	-	REST	Consumers

If	you	have	a	JMS	producer,	the	Apache	ActiveMQ	Artemis	REST	interface	only	supports	ObjectMessage	type.	If	the	JMS	producer
is	aware	that	there	may	be	REST	consumers,	it	should	set	a	JMS	property	to	specify	what	Content-Type	the	Java	object	should	be
translated	into	by	REST	clients.	The	Apache	ActiveMQ	Artemis	REST	server	will	use	RESTEasy	content	handlers
(MessageBodyReader/Writers)	to	transform	the	Java	object	to	the	type	desired.	Here's	an	example	of	a	JMS	producer	setting	the
content	type	of	the	message.

ObjectMessage	message	=	session.createObjectMessage();

message.setStringProperty(org.apache.activemq.rest.HttpHeaderProperty.CONTENT_TYPE,	"application/xml");

If	the	JMS	producer	does	not	set	the	content-type,	then	this	information	must	be	obtained	from	the	REST	consumer.	If	it	is	a	pull
consumer,	then	the	REST	client	should	send	an	Accept	header	with	the	desired	media	types	it	wants	to	convert	the	Java	object	into.	If
the	REST	client	is	a	push	registration,	then	the	type	attribute	of	the	link	element	of	the	push	registration	should	be	set	to	the	desired
type.

REST	Producers	-	JMS	Consumers

If	you	have	a	REST	client	producing	messages	and	a	JMS	consumer,	Apache	ActiveMQ	Artemis	REST	has	a	simple	helper	class	for
you	to	transform	the	HTTP	body	to	a	Java	object.	Here's	some	example	code:

public	void	onMessage(Message	message)

{

			MyType	obj	=	org.apache.activemq.rest.Jms.getEntity(message,	MyType.class);

}

The	way	the		getEntity()		method	works	is	that	if	the	message	is	an	ObjectMessage,	it	will	try	to	extract	the	desired	type	from	it	like
any	other	JMS	message.	If	a	REST	producer	sent	the	message,	then	the	method	uses	RESTEasy	to	convert	the	HTTP	body	to	the	Java
object	you	want.	See	the	Javadoc	of	this	class	for	more	helper	methods.

REST	Interface

196

REST	Interface

197

Embedding	Apache	ActiveMQ	Artemis
Apache	ActiveMQ	Artemis	is	designed	as	set	of	simple	Plain	Old	Java	Objects	(POJOs).	This	means	Apache	ActiveMQ	Artemis	can
be	instantiated	and	run	in	any	dependency	injection	framework	such	as	Spring	or	Google	Guice.	It	also	means	that	if	you	have	an
application	that	could	use	messaging	functionality	internally,	then	it	can	directly	instantiate	Apache	ActiveMQ	Artemis	clients	and
servers	in	its	own	application	code	to	perform	that	functionality.	We	call	this	embedding	Apache	ActiveMQ	Artemis.

Examples	of	applications	that	might	want	to	do	this	include	any	application	that	needs	very	high	performance,	transactional,	persistent
messaging	but	doesn't	want	the	hassle	of	writing	it	all	from	scratch.

Embedding	Apache	ActiveMQ	Artemis	can	be	done	in	very	few	easy	steps.	Instantiate	the	configuration	object,	instantiate	the	server,
start	it,	and	you	have	a	Apache	ActiveMQ	Artemis	running	in	your	virtual	machine.	It's	as	simple	and	easy	as	that.

Simple	Config	File	Embedding
The	simplest	way	to	embed	Apache	ActiveMQ	Artemis	is	to	use	the	embedded	wrapper	classes	and	configure	Apache	ActiveMQ
Artemis	through	its	configuration	files.	There	are	two	different	helper	classes	for	this	depending	on	whether	your	using	the	Apache
ActiveMQ	Artemis	Core	API	or	JMS.

Core	API	Only
For	instantiating	a	core	Apache	ActiveMQ	Artemis	Server	only,	the	steps	are	pretty	simple.	The	example	requires	that	you	have
defined	a	configuration	file		broker.xml		in	your	classpath:

import	org.apache.activemq.artemis.core.server.embedded.EmbeddedActiveMQ;

...

EmbeddedActiveMQ	embedded	=	new	EmbeddedActiveMQ();

embedded.start();

ClientSessionFactory	nettyFactory	=		ActiveMQClient.createClientSessionFactory(

																																								new	TransportConfiguration(

																																											InVMConnectorFactory.class.getName()));

ClientSession	session	=	factory.createSession();

session.createQueue("example",	"example",	true);

ClientProducer	producer	=	session.createProducer("example");

ClientMessage	message	=	session.createMessage(true);

message.getBody().writeString("Hello");

producer.send(message);

session.start();

ClientConsumer	consumer	=	session.createConsumer("example");

ClientMessage	msgReceived	=	consumer.receive();

System.out.println("message	=	"	+	msgReceived.getBody().readString());

session.close();

Embedding	Apache	ActiveMQ	Artemis

198

The		EmbeddedActiveMQ		class	has	a	few	additional	setter	methods	that	allow	you	to	specify	a	different	config	file	name	as	well	as	other
properties.	See	the	javadocs	for	this	class	for	more	details.

JMS	API

JMS	embedding	is	simple	as	well.	This	example	requires	that	you	have	defined	the	config	file		broker.xml	.	Let's	also	assume	that	a
queue	and	connection	factory	has	been	defined	in	the		broker.xml		config	file	as	well.

import	org.apache.activemq.artemis.jms.server.embedded.EmbeddedJMS;

...

EmbeddedJMS	jms	=	new	EmbeddedJMS();

jms.start();

//	This	assumes	we	have	configured	broker.xml	with	the	appropriate	config	information

ConnectionFactory	connectionFactory	=	jms.lookup("ConnectionFactory");

Destination	destination	=	jms.lookup("/example/queue");

...	regular	JMS	code	...

By	default,	the		EmbeddedJMS		class	will	store	the	"entries"	defined	for	your	JMS	components	within		broker.xml		in	an	internal
concurrent	hash	map.	The		EmbeddedJMS.lookup()		method	returns	components	stored	in	this	map.	If	you	want	to	use	JNDI,	call	the
	EmbeddedJMS.setContext()		method	with	the	root	JNDI	context	you	want	your	components	bound	into.	See	the	JavaDocs	for	this	class
for	more	details	on	other	config	options.

POJO	instantiation	-	Embedding	Programmatically
You	can	follow	this	step-by-step	guide	to	programmatically	embed	the	core,	non-JMS	Apache	ActiveMQ	Artemis	Server	instance:

Create	the	configuration	object	-	this	contains	configuration	information	for	an	Apache	ActiveMQ	Artemis	instance.	The	setter	methods
of	this	class	allow	you	to	programmatically	set	configuration	options	as	describe	in	the	Server	Configuration	section.

The	acceptors	are	configured	through		ConfigurationImpl	.	Just	add	the		NettyAcceptorFactory		on	the	transports	the	same	way	you
would	through	the	main	configuration	file.

import	org.apache.activemq.artemis.core.config.Configuration;

import	org.apache.activemq.artemis.core.config.impl.ConfigurationImpl;

...

Configuration	config	=	new	ConfigurationImpl();

HashSet<TransportConfiguration>	transports	=	new	HashSet<TransportConfiguration>();

transports.add(new	TransportConfiguration(NettyAcceptorFactory.class.getName()));

transports.add(new	TransportConfiguration(InVMAcceptorFactory.class.getName()));

config.setAcceptorConfigurations(transports);

You	need	to	instantiate	an	instance	of		org.apache.activemq.artemis.api.core.server.embedded.EmbeddedActiveMQ		and	add	the
configuration	object	to	it.

import	org.apache.activemq.artemis.api.core.server.ActiveMQ;

import	org.apache.activemq.artemis.core.server.embedded.EmbeddedActiveMQ;

...

EmbeddedActiveMQ	server	=	new	EmbeddedActiveMQ();

server.setConfiguration(config);

server.start();

Embedding	Apache	ActiveMQ	Artemis

199

You	also	have	the	option	of	instantiating		ActiveMQServerImpl		directly:

ActiveMQServer	server	=	new	ActiveMQServerImpl(config);

server.start();

For	JMS	POJO	instantiation,	you	work	with	the	EmbeddedJMS	class	instead	as	described	earlier.	First	you	define	the	configuration
programmatically	for	your	ConnectionFactory	and	Destination	objects,	then	set	the	JmsConfiguration	property	of	the	EmbeddedJMS
class.	Here	is	an	example	of	this:

//	Step	1.	Create	Apache	ActiveMQ	Artemis	core	configuration,	and	set	the	properties	accordingly

Configuration	configuration	=	new	ConfigurationImpl()

			.setPersistenceEnabled(false)

			.setSecurityEnabled(false)

			.addAcceptorConfiguration(new	TransportConfiguration(NettyAcceptorFactory.class.getName()))

			.addConnectorConfiguration("myConnector",	new	TransportConfiguration(NettyConnectorFactory.class.getName()));

//	Step	2.	Create	the	JMS	configuration

JMSConfiguration	jmsConfig	=	new	JMSConfigurationImpl();

//	Step	3.	Configure	the	JMS	ConnectionFactory

ConnectionFactoryConfiguration	cfConfig	=	new	ConnectionFactoryConfigurationImpl()

			.setName("cf")

			.setConnectorNames(Arrays.asList("myConnector"))

			.setBindings("/cf");

jmsConfig.getConnectionFactoryConfigurations().add(cfConfig);

//	Step	4.	Configure	the	JMS	Queue

JMSQueueConfiguration	queueConfig	=	new	JMSQueueConfigurationImpl()

			.setName("queue1")

			.setDurable(false)

			.setBindings("/queue/queue1");

jmsConfig.getQueueConfigurations().add(queueConfig);

//	Step	5.	Start	the	JMS	Server	using	the	Apache	ActiveMQ	Artemis	core	server	and	the	JMS	configuration

jmsServer	=	new	EmbeddedJMS()

			.setConfiguration(configuration)

			.setJmsConfiguration(jmsConfig)

			.start();

Please	see	the	examples	for	an	example	which	shows	how	to	setup	and	run	Apache	ActiveMQ	Artemis	embedded	with	JMS.

Dependency	Frameworks

You	may	also	choose	to	use	a	dependency	injection	framework	such	as	The	Spring	Framework.	See	Spring	Integration	for	more	details
on	Spring	and	Apache	ActiveMQ	Artemis.

Apache	ActiveMQ	Artemis	standalone	uses	Airline	to	bootstrap.

Embedding	Apache	ActiveMQ	Artemis

200

https://github.com/airlift/airline

Artemis	on	Apache	Karaf
Apache	ActiveMQ	Artemis	is	OSGi	ready.	Below	you	can	find	instruction	on	how	to	install	and	configure	broker	on	Apache	Karaf
OSGi	container.

Installation

Apache	ActiveMQ	Artemis	provides	features	that	makes	it	easy	to	install	the	broker	on	Apache	Karaf	(4.x	or	later).	First	you	need	to
define	the	feature	URL,	like

karaf@root()>	feature:repo-add	mvn:org.apache.activemq/artemis-features/1.3.0-SNAPSHOT/xml/features

This	will	add	Artemis	related	features

karaf@root()>	feature:list	|	grep	artemis

artemis																							|	1.3.0.SNAPSHOT			|										|	Uninstalled	|	artemis-1.3.0-SNAPSHOT			|	Full	ActiveMQ	Artemis	b

roker	with	default	configuration

netty-core																				|	4.0.32.Final					|										|	Uninstalled	|	artemis-1.3.0-SNAPSHOT			|	Netty	libraries

artemis-core																		|	1.3.0.SNAPSHOT			|										|	Uninstalled	|	artemis-1.3.0-SNAPSHOT			|	ActiveMQ	Artemis	broker

	libraries

artemis-amqp																		|	1.3.0.SNAPSHOT			|										|	Uninstalled	|	artemis-1.3.0-SNAPSHOT			|	ActiveMQ	Artemis	AMQP	p

rotocol	libraries

artemis-stomp																	|	1.3.0.SNAPSHOT			|										|	Uninstalled	|	artemis-1.3.0-SNAPSHOT			|	ActiveMQ	Artemis	Stomp	

protocol	libraries

artemis-mqtt																		|	1.3.0.SNAPSHOT			|										|	Uninstalled	|	artemis-1.3.0-SNAPSHOT			|	ActiveMQ	Artemis	MQTT	p

rotocol	libraries

artemis-hornetq															|	1.3.0.SNAPSHOT			|										|	Uninstalled	|	artemis-1.3.0-SNAPSHOT			|	ActiveMQ	Artemis	Hornet

Q	protocol	libraries				

Feature	named		artemis		contains	full	broker	installation,	so	running

feature:install	artemis

will	install	and	run	the	broker.

Configuration

The	broker	is	installed	as		org.apache.activemq.artemis		OSGi	component,	so	it's	configured	through
	${KARAF_BASE}/etc/org.apache.activemq.artemis.cfg		file.	An	example	of	the	file	looks	like

config=file:etc/artemis.xml

name=local

domain=karaf

rolePrincipalClass=org.apache.karaf.jaas.boot.principal.RolePrincipal

Name Description Default	value

config Location	of	the	configuration	file ${KARAF_BASE}/etc/artemis.xml

name Name	of	the	broker local

domain JAAS	domain	to	use	for	security karaf

rolePrincipalClass Class	name	used	for	role	authorization	purposes org.apache.karaf.jaas.boot.principal.RolePrincipal

Apache	Karaf

201

Apache	Karaf

202

Spring	Integration
Apache	ActiveMQ	Artemis	provides	a	simple	bootstrap	class,		org.apache.activemq.integration.spring.SpringJmsBootstrap	,	for
integration	with	Spring.	To	use	it,	you	configure	Apache	ActiveMQ	Artemis	as	you	always	would,	through	its	various	configuration
files	like		broker.xml	,		activemq-jms.xml	,	and		activemq-users.xml	.	The	Spring	helper	class	starts	the	Apache	ActiveMQ	Artemis
server	and	adds	any	factories	or	destinations	configured	within		activemq-jms.xml		directly	into	the	namespace	of	the	Spring	context.
Let's	take	this		activemq-jms.xml		file	for	instance:

<configuration	xmlns="urn:activemq"

			xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

			xsi:schemaLocation="urn:activemq	/schema/artemis-jms.xsd">

			<!--the	queue	used	by	the	example-->

			<queue	name="exampleQueue"/>

</configuration>

Here	we've	specified	a		javax.jms.ConnectionFactory		we	want	bound	to	a		ConnectionFactory		entry	as	well	as	a	queue	destination
bound	to	a		/queue/exampleQueue		entry.	Using	the		SpringJmsBootStrap		bean	will	automatically	populate	the	Spring	context	with
references	to	those	beans	so	that	you	can	use	them.	Below	is	an	example	Spring	JMS	bean	file	taking	advantage	of	this	feature:

<beans	xmlns="http://www.springframework.org/schema/beans"

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

				xsi:schemaLocation="http://www.springframework.org/schema/beans

								http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

			<bean	id="EmbeddedJms"	class="org.apache.activemq.integration.spring.SpringJmsBootstrap"	init-method="start"/>

			<bean	id="listener"	class="org.apache.activemq.tests.integration.spring.ExampleListener"/>

			<bean	id="listenerContainer"	class="org.springframework.jms.listener.DefaultMessageListenerContainer">

						<property	name="connectionFactory"	ref="ConnectionFactory"/>

						<property	name="destination"	ref="/queue/exampleQueue"/>

						<property	name="messageListener"	ref="listener"/>

			</bean>

</beans>

As	you	can	see,	the		listenerContainer		bean	references	the	components	defined	in	the		activemq-jms.xml		file.	The		SpringJmsBootstrap	
class	extends	the	EmbeddedJMS	class	talked	about	in	JMS	API	and	the	same	defaults	and	configuration	options	apply.	Also	notice	that
an		init-method		must	be	declared	with	a	start	value	so	that	the	bean's	lifecycle	is	executed.	See	the	javadocs	for	more	details	on	other
properties	of	the	bean	class.

Spring	Integration

203

AeroGear	Integration
AeroGears	push	technology	provides	support	for	different	push	notification	technologies	like	Google	Cloud	Messaging,	Apple's	APNs
or	Mozilla's	SimplePush.	Apache	ActiveMQ	Artemis	allows	you	to	configure	a	Connector	Service	that	will	consume	messages	from	a
queue	and	forward	them	to	an	AeroGear	push	server	and	subsequently	sent	as	notifications	to	mobile	devices.

Configuring	an	AeroGear	Connector	Service

AeroGear	Connector	services	are	configured	in	the	connector-services	configuration:

				<connector-service	name="aerogear-connector">

				<factory-class>org.apache.activemq.artemis.integration.aerogear.AeroGearConnectorServiceFactory</factory-class>

				<param	key="endpoint"	value="endpoint"/>

				<param	key="queue"	value="jms.queue.aerogearQueue"/>

				<param	key="application-id"	value="an	applicationid"/>

				<param	key="master-secret"	value="a	mastersecret"/>

				</connector-service>

				<address-setting	match="jms.queue.lastValueQueue">

				<last-value-queue>true</last-value-queue>

				</address-setting>

Shown	are	the	required	params	for	the	connector	service	and	are:

	endpoint	.	The	endpoint	or	URL	of	you	AeroGear	application.

	queue	.	The	name	of	the	queue	to	consume	from.

	application-id	.	The	application	id	of	your	mobile	application	in	AeroGear.

	master-secret	.	The	secret	of	your	mobile	application	in	AeroGear.

As	well	as	these	required	parameters	there	are	the	following	optional	parameters

	ttl	.	The	time	to	live	for	the	message	once	AeroGear	receives	it.

	badge	.	The	badge	the	mobile	app	should	use	for	the	notification.

	sound	.	The	sound	the	mobile	app	should	use	for	the	notification.

	filter	.	A	message	filter(selector)	to	use	on	the	connector.

	retry-interval	.	If	an	error	occurs	on	send,	how	long	before	we	try	again	to	connect.

	retry-attempts	.	How	many	times	we	should	try	to	reconnect	after	an	error.

	variants	.	A	comma	separated	list	of	variants	that	should	get	the	message.

	aliases	.	A	list	of	aliases	that	should	get	the	message.

	device-types	.	A	list	of	device	types	that	should	get	the	messag.

More	in	depth	explanations	of	the	AeroGear	related	parameters	can	be	found	in	the	AeroGear	Push	docs

How	to	send	a	message	for	AeroGear
To	send	a	message	intended	for	AeroGear	simply	send	a	JMS	Message	and	set	the	appropriate	headers,	like	so

Message	message	=	session.createMessage();

message.setStringProperty("AEROGEAR_ALERT",	"Hello	this	is	a	notification	from	ActiveMQ");

AeroGear	Integration

204

http://aerogear.org/push/

producer.send(message);

The	'AEROGEAR_ALERT'	property	will	be	the	alert	sent	to	the	mobile	device.

Note

If	the	message	does	not	contain	this	property	then	it	will	be	simply	ignored	and	left	on	the	queue

Its	also	possible	to	override	any	of	the	other	AeroGear	parameters	by	simply	setting	them	on	the	message,	for	instance	if	you	wanted	to
set	ttl	of	a	message	you	would:

message.setIntProperty("AEROGEAR_TTL",	1234);

or	if	you	wanted	to	set	the	list	of	variants	you	would	use:

message.setStringProperty("AEROGEAR_VARIANTS",	"variant1,variant2,variant3");

```

Again	refer	to	the	AeroGear	documentation	for	a	more	in	depth	view	on	how	to	use	these	settings

AeroGear	Integration

205



Vert.x	Integration
Vert.x	is	a	lightweight,	high	performance	application	platform	for	the	JVM	that's	designed	for	modern	mobile,	web,	and	enterprise
applications.	Vert.x	provides	a	distributed	event	bus	that	allows	messages	to	be	sent	across	vert.x	instances	and	clients.	You	can	now
redirect	and	persist	any	vert.x	messages	to	Apache	ActiveMQ	Artemis	and	route	those	messages	to	a	specified	vertx	address	by
configuring	Apache	ActiveMQ	Artemis	vertx	incoming	and	outgoing	vertx	connector	services.

Configuring	a	Vertx	Incoming	Connector	Service

Vertx	Incoming	Connector	services	receive	messages	from	vertx	event	bus	and	route	them	to	an	Apache	ActiveMQ	Artemis	queue.	Such
a	service	can	be	configured	as	follows:

<connector-service	name="vertx-incoming-connector">

<factory-class>org.apache.activemq.integration.vertx.VertxIncomingConnectorServiceFactory</factory-class>

<param	key="host"	value="127.0.0.1"/>

<param	key="port"	value="0"/>

<param	key="queue"	value="jms.queue.vertxQueue"/>

<param	key="vertx-address"	value="vertx.in.eventaddress"/>

</connector-service>

Shown	are	the	required	params	for	the	connector	service:

	queue	.	The	name	of	the	Apache	ActiveMQ	Artemis	queue	to	send	message	to.

As	well	as	these	required	parameters	there	are	the	following	optional	parameters

	host	.	The	host	name	on	which	the	vertx	target	container	is	running.	Default	is	localhost.

	port	.	The	port	number	to	which	the	target	vertx	listens.	Default	is	zero.

	quorum-size	.	The	quorum	size	of	the	target	vertx	instance.

	ha-group	.	The	name	of	the	ha-group	of	target	vertx	instance.	Default	is		activemq	.

	vertx-address	.	The	vertx	address	to	listen	to.	default	is		org.apache.activemq	.

Configuring	a	Vertx	Outgoing	Connector	Service
Vertx	Outgoing	Connector	services	fetch	vertx	messages	from	a	ActiveMQ	queue	and	put	them	to	vertx	event	bus.	Such	a	service	can	be
configured	as	follows:

<connector-service	name="vertx-outgoing-connector">

<factory-class>org.apache.activemq.integration.vertx.VertxOutgoingConnectorServiceFactory</factory-class>

<param	key="host"	value="127.0.0.1"/>

<param	key="port"	value="0"/>

<param	key="queue"	value="jms.queue.vertxQueue"/>

<param	key="vertx-address"	value="vertx.out.eventaddress"/>

<param	key="publish"	value="true"/>

</connector-service>

Shown	are	the	required	params	for	the	connector	service:

	queue	.	The	name	of	the	Apache	ActiveMQ	Artemis	queue	to	fetch	message	from.

As	well	as	these	required	parameters	there	are	the	following	optional	parameters

	host	.	The	host	name	on	which	the	vertx	target	container	is	running.	Default	is	localhost.

VertX	Integration

206

http://vertx.io/


	port	.	The	port	number	to	which	the	target	vertx	listens.	Default	is	zero.

	quorum-size	.	The	quorum	size	of	the	target	vertx	instance.

	ha-group	.	The	name	of	the	ha-group	of	target	vertx	instance.	Default	is		activemq	.

	vertx-address	.	The	vertx	address	to	put	messages	to.	default	is	org.apache.activemq.

	publish	.	How	messages	is	sent	to	vertx	event	bus.	"true"	means	using	publish	style.	"false"	means	using	send	style.	Default	is
false.

VertX	Integration

207



CDI	Integration
Apache	ActiveMQ	Artemis	provides	a	simple	CDI	integration.	It	can	either	use	an	embedded	broker	or	connect	to	a	remote	broker.

Configuring	a	connection

Configuration	is	provided	by	implementing	the		ArtemisClientConfiguration		interface.

public	interface	ArtemisClientConfiguration	{

			String	getHost();

			Integer	getPort();

			String	getUsername();

			String	getPassword();

			String	getUrl();

			String	getConnectorFactory();

			boolean	startEmbeddedBroker();

			boolean	isHa();

			boolean	hasAuthentication();

}

There's	a	default	configuration	out	of	the	box,	if	none	is	specified.	This	will	generate	an	embedded	broker.

CDI	Integration

208



Intercepting	Operations
Apache	ActiveMQ	Artemis	supports	interceptors	to	intercept	packets	entering	and	exiting	the	server.	Incoming	and	outgoing
interceptors	are	be	called	for	any	packet	entering	or	exiting	the	server	respectively.	This	allows	custom	code	to	be	executed,	e.g.	for
auditing	packets,	filtering	or	other	reasons.	Interceptors	can	change	the	packets	they	intercept.	This	makes	interceptors	powerful,	but
also	potentially	dangerous.

Implementing	The	Interceptors

All	interceptors	are	protocol	specific.

An	interceptor	for	the	core	protocol	must	implement	the	interface		Interceptor	:

package	org.apache.artemis.activemq.api.core.interceptor;

public	interface	Interceptor

{

			boolean	intercept(Packet	packet,	RemotingConnection	connection)	throws	ActiveMQException;

}

For	stomp	protocol	an	interceptor	must	implement	the	interface		StompFrameInterceptor	:

package	org.apache.activemq.artemis.core.protocol.stomp;

public	interface	StompFrameInterceptor	extends	BaseInterceptor<StompFrame>

{

			boolean	intercept(StompFrame	stompFrame,	RemotingConnection	connection);

}

Likewise	for	MQTT	protocol,	an	interceptor	must	implement	the	interface		MQTTInterceptor	:

package	org.apache.activemq.artemis.core.protocol.mqtt;

public	interface	MQTTInterceptor	extends	BaseInterceptor<MqttMessage>

{

				boolean	intercept(MqttMessage	mqttMessage,	RemotingConnection	connection);

}

The	returned	boolean	value	is	important:

if		true		is	returned,	the	process	continues	normally

if		false		is	returned,	the	process	is	aborted,	no	other	interceptors	will	be	called	and	the	packet	will	not	be	processed	further	by	the
server.

Configuring	The	Interceptors

Both	incoming	and	outgoing	interceptors	are	configured	in		broker.xml	:

<remoting-incoming-interceptors>

			<class-name>org.apache.activemq.artemis.jms.example.LoginInterceptor</class-name>

			<class-name>org.apache.activemq.artemis.jms.example.AdditionalPropertyInterceptor</class-name>

</remoting-incoming-interceptors>

<remoting-outgoing-interceptors>

			<class-name>org.apache.activemq.artemis.jms.example.LogoutInterceptor</class-name>

			<class-name>org.apache.activemq.artemis.jms.example.AdditionalPropertyInterceptor</class-name>

Intercepting	Operations

209



</remoting-outgoing-interceptors>

The	interceptors	classes	(and	their	dependencies)	must	be	added	to	the	server	classpath	to	be	properly	instantiated	and	called.

Interceptors	on	the	Client	Side

The	interceptors	can	also	be	run	on	the	client	side	to	intercept	packets	either	sent	by	the	client	to	the	server	or	by	the	server	to	the
client.	This	is	done	by	adding	the	interceptor	to	the		ServerLocator		with	the		addIncomingInterceptor(Interceptor)		or
	addOutgoingInterceptor(Interceptor)		methods.

As	noted	above,	if	an	interceptor	returns		false		then	the	sending	of	the	packet	is	aborted	which	means	that	no	other	interceptors	are	be
called	and	the	packet	is	not	be	processed	further	by	the	client.	Typically	this	process	happens	transparently	to	the	client	(i.e.	it	has	no
idea	if	a	packet	was	aborted	or	not).	However,	in	the	case	of	an	outgoing	packet	that	is	sent	in	a		blocking		fashion	a		ActiveMQException	
will	be	thrown	to	the	caller.	The	exception	is	thrown	because	blocking	sends	provide	reliability	and	it	is	considered	an	error	for	them	not
to	succeed.		Blocking		sends	occurs	when,	for	example,	an	application	invokes		setBlockOnNonDurableSend(true)		or
	setBlockOnDurableSend(true)		on	its		ServerLocator		or	if	an	application	is	using	a	JMS	connection	factory	retrieved	from	JNDI	that	has
either		block-on-durable-send		or		block-on-non-durable-send		set	to		true	.	Blocking	is	also	used	for	packets	dealing	with	transactions
(e.g.	commit,	roll-back,	etc.).	The		ActiveMQException		thrown	will	contain	the	name	of	the	interceptor	that	returned	false.

As	on	the	server,	the	client	interceptor	classes	(and	their	dependencies)	must	be	added	to	the	classpath	to	be	properly	instantiated	and
invoked.

Example

See	the	examples	chapter	for	an	example	which	shows	how	to	use	interceptors	to	add	properties	to	a	message	on	the	server.

Intercepting	Operations

210



Protocols	and	Interoperability

Protocols

ActiveMQ	Artemis	has	a	plugable	protocol	architecture.	Protocol	plugins	come	in	the	form	of	ActiveMQ	Artemis	protocol	modules.
Each	protocol	module	should	be	added	to	the	brokers	class	path	and	are	loaded	by	the	broker	at	boot	time.	ActiveMQ	Artemis	ships
with	5	protocol	modules	out	of	the	box.	The	5	modules	offer	support	for	the	following	protocols:

AMQP
OpenWire
MQTT
STOMP
HornetQ

In	addition	to	the	protocols	above	ActiveMQ	Artemis	also	offers	support	for	it's	own	highly	performant	native	protocol	"Core".

Configuring	protocols

In	order	to	make	use	of	a	particular	protocol,	a	transport	must	be	configured	with	the	desired	protocol	enabled.	There	is	a	whole	section
on	configuring	transports	that	can	be	found	here.

The	default	configuration	shipped	with	the	ActiveMQ	Artemis	distribution	comes	with	a	number	of	acceptors	already	defined,	one	for
each	of	the	above	protocols	plus	a	generic	acceptor	that	supports	all	protocols.	To	enable	a	protocol	on	a	particular	acceptor	simply	add
a	url	parameter	"protocol=AMQP,STOMP"	to	the	acceptor	url.	Where	the	value	of	the	parameter	is	a	comma	separated	list	of	protocol
names.	If	the	protocol	parameter	is	omitted	from	the	url	all	protocols	are	enabled.

<!--	The	following	example	enables	only	MQTT	on	port	1883	-->

<acceptors>

			<acceptor>tcp://localhost:1883?protocols=MQTT</acceptor>

</acceptors>

<!--	The	following	example	enables	MQTT	and	AMQP	on	port	61617	-->

<acceptors>

			<acceptor>tcp://localhost:1883?protocols=MQTT,AMQP</acceptor>

</acceptors>

<!--	The	following	example	enables	all	protocols	on	61616	-->

<acceptors>

			<acceptor>tcp://localhost:61616</acceptor>

</acceptors>

AMQP

Apache	ActiveMQ	Artemis	supports	the	AMQP	1.0	specification.	To	enable	AMQP	you	must	configure	a	Netty	Acceptor	to	receive
AMQP	clients,	like	so:

<acceptor	name="amqp-acceptor">tcp://localhost:5672?protocols=AMQP</acceptor>

Apache	ActiveMQ	Artemis	will	then	accept	AMQP	1.0	clients	on	port	5672	which	is	the	default	AMQP	port.

There	are	2	AMQP	examples	available	see	proton-j	and	proton-ruby	which	use	the	qpid	Java	and	Ruby	clients	respectively.

AMQP	and	security

Protocols	and	Interoperability

211

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp


The	Apache	ActiveMQ	Artemis	Server	accepts	AMQP	SASL	Authentication	and	will	use	this	to	map	onto	the	underlying	session
created	for	the	connection	so	you	can	use	the	normal	Apache	ActiveMQ	Artemis	security	configuration.

AMQP	Links

An	AMQP	Link	is	a	uni	directional	transport	for	messages	between	a	source	and	a	target,	i.e.	a	client	and	the	Apache	ActiveMQ
Artemis	Broker.	A	link	will	have	an	endpoint	of	which	there	are	2	kinds,	a	Sender	and	A	Receiver.	At	the	Broker	a	Sender	will	have	its
messages	converted	into	an	Apache	ActiveMQ	Artemis	Message	and	forwarded	to	its	destination	or	target.	A	Receiver	will	map	onto	an
Apache	ActiveMQ	Artemis	Server	Consumer	and	convert	Apache	ActiveMQ	Artemis	messages	back	into	AMQP	messages	before
being	delivered.

AMQP	and	destinations

If	an	AMQP	Link	is	dynamic	then	a	temporary	queue	will	be	created	and	either	the	remote	source	or	remote	target	address	will	be	set	to
the	name	of	the	temporary	queue.	If	the	Link	is	not	dynamic	then	the	the	address	of	the	remote	target	or	source	will	used	for	the	queue.
If	this	does	not	exist	then	an	exception	will	be	sent

Note

For	the	next	version	we	will	add	a	flag	to	aut	create	durable	queue	but	for	now	you	will	have	to	add	them	via	the	configuration

AMQP	and	Topics

Although	amqp	has	no	notion	of	topics	it	is	still	possible	to	treat	amqp	consumers	or	receivers	as	subscriptions	rather	than	just
consumers	on	a	queue.	By	default	any	receiving	link	that	attaches	to	an	address	with	the	prefix		jms.topic.		will	be	treated	as	a
subscription	and	a	subscription	queue	will	be	created.	If	the	Terminus	Durability	is	either	UNSETTLED_STATE	or
CONFIGURATION	then	the	queue	will	be	made	durable,	similar	to	a	JMS	durable	subscription	and	given	a	name	made	up	from	the
container	id	and	the	link	name,	something	like		my-container-id:my-link-name	.	if	the	Terminus	Durability	is	configured	as	NONE	then	a
volatile	queue	will	be	created.

The	prefix	can	be	changed	by	configuring	the	Acceptor	and	setting	the		pubSubPrefix		like	so

tcp://0.0.0.0:5672?protocols=AMQP;pubSubPrefix=foo.bar.

Artemis	also	supports	the	qpid-jms	client	and	will	respect	its	use	of	topics	regardless	of	the	prefix	used	for	the	address.

AMQP	and	Coordinations	-	Handling	Transactions

An	AMQP	links	target	can	also	be	a	Coordinator,	the	Coordinator	is	used	to	handle	transactions.	If	a	coordinator	is	used	the	the
underlying	HormetQ	Server	session	will	be	transacted	and	will	be	either	rolled	back	or	committed	via	the	coordinator.

Note

AMQP	allows	the	use	of	multiple	transactions	per	session,		amqp:multi-txns-per-ssn	,	however	in	this	version	Apache
ActiveMQ	Artemis	will	only	support	single	transactions	per	session

OpenWire

Apache	ActiveMQ	Artemis	now	supports	the	OpenWire	protocol	so	that	an	Apache	ActiveMQ	Artemis	JMS	client	can	talk	directly
to	an	Apache	ActiveMQ	Artemis	server.	To	enable	OpenWire	support	you	must	configure	a	Netty	Acceptor,	like	so:

<acceptor	name="openwire-acceptor">tcp://localhost:61616?protocols=OPENWIRE</acceptor>

The	Apache	ActiveMQ	Artemis	server	will	then	listens	on	port	61616	for	incoming	openwire	commands.	Please	note	the	"protocols"	is
not	mandatory	here.	The	openwire	configuration	conforms	to	Apache	ActiveMQ	Artemis's	"Single	Port"	feature.	Please	refer	to
Configuring	Single	Port	for	details.

Protocols	and	Interoperability

212

http://activemq.apache.org/openwire.html


Please	refer	to	the	openwire	example	for	more	coding	details.

Currently	we	support	Apache	ActiveMQ	Artemis	clients	that	using	standard	JMS	APIs.	In	the	future	we	will	get	more	supports	for
some	advanced,	Apache	ActiveMQ	Artemis	specific	features	into	Apache	ActiveMQ	Artemis.

Connection	Monitoring

OpenWire	has	a	few	parameters	to	control	how	each	connection	is	monitored,	they	are:

maxInactivityDuration:	It	specifies	the	time	(milliseconds)	after	which	the	connection	is	closed	by	the	broker	if	no	data	was
received.	Default	value	is	30000.

maxInactivityDurationInitalDelay:	It	specifies	the	maximum	delay	(milliseconds)	before	inactivity	monitoring	is	started	on	the
connection.	It	can	be	useful	if	a	broker	is	under	load	with	many	connections	being	created	concurrently.	Default	value	is	10000.

useInactivityMonitor:	A	value	of	false	disables	the	InactivityMonitor	completely	and	connections	will	never	time	out.	By	default	it
is	enabled.	On	broker	side	you	don't	neet	set	this.	Instead	you	can	set	the	connection-ttl	to	-1.

useKeepAlive:	Whether	or	not	to	send	a	KeepAliveInfo	on	an	idle	connection	to	prevent	it	from	timing	out.	Enabled	by	default.
Disabling	the	keep	alive	will	still	make	connections	time	out	if	no	data	was	received	on	the	connection	for	the	specified	amount	of
time.

Note	at	the	beginning	the	InactivityMonitor	negotiates	the	appropriate	maxInactivityDuration	and	maxInactivityDurationInitalDelay.
The	shortest	duration	is	taken	for	the	connection.

More	details	please	see	ActiveMQ	InactivityMonitor.

MQTT
MQTT	is	a	light	weight,	client	to	server,	publish	/	subscribe	messaging	protocol.	MQTT	has	been	specifically	designed	to	reduce
transport	overhead	(and	thus	network	traffic)	and	code	footprint	on	client	devices.	For	this	reason	MQTT	is	ideally	suited	to
constrained	devices	such	as	sensors	and	actuators	and	is	quickly	becoming	the	defacto	standard	communication	protocol	for	IoT.

Apache	ActiveMQ	Artemis	supports	MQTT	v3.1.1	(and	also	the	older	v3.1	code	message	format).	To	enable	MQTT,	simply	add	an
appropriate	acceptor	with	the	MQTT	protocol	enabled.	For	example:

<acceptor	name="mqtt">tcp://localhost:1883?protocols=MQTT</acceptor>

By	default	the	configuration	shipped	with	Apache	ActiveMQ	Artemis	has	the	above	acceptor	already	defined,	MQTT	is	also	active	by
default	on	the	generic	acceptor	defined	on	port	61616	(where	all	protocols	are	enabled),	in	the	out	of	the	box	configuration.

The	best	source	of	information	on	the	MQTT	protocol	is	in	the	specification.	The	MQTT	v3.1.1	specification	can	be	downloaded	from
the	OASIS	website	here:	http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

Some	note	worthy	features	of	MQTT	are	explained	below:

MQTT	Quality	of	Service

MQTT	offers	3	quality	of	service	levels.

Each	message	(or	topic	subscription)	can	define	a	quality	of	service	that	is	associated	with	it.	The	quality	of	service	level	defined	on	a
topic	is	the	maximum	level	a	client	is	willing	to	accept.	The	quality	of	service	level	on	a	message	is	the	desired	quality	of	service	level	for
this	message.	The	broker	will	attempt	to	deliver	messages	to	subscribers	at	the	highest	quality	of	service	level	based	on	what	is	defined
on	the	message	and	topic	subscription.

Each	quality	of	service	level	offers	a	level	of	guarantee	by	which	a	message	is	sent	or	received:

Protocols	and	Interoperability

213

http://activemq.apache.org/activemq-inactivitymonitor.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html


QoS	0:	AT	MOST	ONCE:	Guarantees	that	a	particular	message	is	only	ever	received	by	the	subscriber	a	maximum	of	one	time.
This	does	mean	that	the	message	may	never	arrive.	The	sender	and	the	receiver	will	attempt	to	deliver	the	message,	but	if	something
fails	and	the	message	does	not	reach	it's	destination	(say	due	to	a	network	connection)	the	message	may	be	lost.	This	QoS	has	the
least	network	traffic	overhead	and	the	least	burden	on	the	client	and	the	broker	and	is	often	useful	for	telemetry	data	where	it
doesn't	matter	if	some	of	the	data	is	lost.

QoS	1:	AT	LEAST	ONCE:	Guarantees	that	a	message	will	reach	it's	intended	recipient	one	or	more	times.	The	sender	will	continue
to	send	the	message	until	it	receives	an	acknowledgment	from	the	recipient,	confirming	it	has	received	the	message.	The	result	of
this	QoS	is	that	the	recipient	may	receive	the	message	multiple	times,	and	also	increases	the	network	overhead	than	QoS	0,	(due	to
acks).	In	addition	more	burden	is	placed	on	the	sender	as	it	needs	to	store	the	message	and	retry	should	it	fail	to	receive	an	ack	in	a
reasonable	time.

QoS	2:	EXACTLY	ONCE:	The	most	costly	of	the	QoS	(in	terms	of	network	traffic	and	burden	on	sender	and	receiver)	this	QoS
will	ensure	that	the	message	is	received	by	a	recipient	exactly	one	time.	This	ensures	that	the	receiver	never	gets	any	duplicate
copies	of	the	message	and	will	eventually	get	it,	but	at	the	extra	cost	of	network	overhead	and	complexity	required	on	the	sender
and	receiver.

MQTT	Retain	Messages

MQTT	has	an	interesting	feature	in	which	messages	can	be	"retained"	for	a	particular	address.	This	means	that	once	a	retain	message	has
been	sent	to	an	address,	any	new	subscribers	to	that	address	will	receive	the	last	sent	retain	message	before	any	others	messages,	this
happens	even	if	the	retained	message	was	sent	before	a	client	has	connected	or	subscribed.	An	example	of	where	this	feature	might	be
useful	is	in	environments	such	as	IoT	where	devices	need	to	quickly	get	the	current	state	of	a	system	when	they	are	on	boarded	into	a
system.

Will	Messages

A	will	message	can	be	sent	when	a	client	initially	connects	to	a	broker.	Clients	are	able	to	set	a	"will	message"	as	part	of	the	connect
packet.	If	the	client	abnormally	disconnects,	say	due	to	a	device	or	network	failure	the	broker	will	proceed	to	publish	the	will	message	to
the	specified	address	(as	defined	also	in	the	connect	packet).	Other	subscribers	to	the	will	topic	will	receive	the	will	message	and	can
react	accordingly.	This	feature	can	be	useful	in	an	IoT	style	scenario	to	detect	errors	across	a	potentially	large	scale	deployment	of
devices.

Wild	card	subscriptions

MQTT	addresses	are	hierarchical	much	like	a	file	system,	and	use	"/"	character	to	separate	hierarchical	levels.	Subscribers	are	able	to
subscribe	to	specific	topics	or	to	whole	branches	of	a	hierarchy.

To	subscribe	to	branches	of	an	address	hierarchy	a	subscriber	can	use	wild	cards.

There	are	2	types	of	wild	card	in	MQTT:

"#"	Multi	level	wild	card.	Adding	this	wild	card	to	an	address	would	match	all	branches	of	the	address	hierarchy	under	a	specified
node.	For	example:	/uk/#	Would	match	/uk/cities,	/uk/cities/newcastle	and	also	/uk/rivers/tyne.	Subscribing	to	an	address	"#"	would
result	in	subscribing	to	all	topics	in	the	broker.	This	can	be	useful,	but	should	be	done	so	with	care	since	it	has	significant
performance	implications.

"+"	Single	level	wild	card.	Matches	a	single	level	in	the	address	hierarchy.	For	example	/uk/+/stores	would	match
/uk/newcastle/stores	but	not	/uk/cities/newcastle/stores.

Stomp

Stomp	is	a	text-orientated	wire	protocol	that	allows	Stomp	clients	to	communicate	with	Stomp	Brokers.	Apache	ActiveMQ	Artemis
now	supports	Stomp	1.0,	1.1	and	1.2.

Stomp	clients	are	available	for	several	languages	and	platforms	making	it	a	good	choice	for	interoperability.

Protocols	and	Interoperability

214

http://stomp.github.com/


Native	Stomp	support

Apache	ActiveMQ	Artemis	provides	native	support	for	Stomp.	To	be	able	to	send	and	receive	Stomp	messages,	you	must	configure	a
	NettyAcceptor		with	a		protocols		parameter	set	to	have		stomp	:

<acceptor	name="stomp-acceptor">tcp://localhost:61613?protocols=STOMP</acceptor>

With	this	configuration,	Apache	ActiveMQ	Artemis	will	accept	Stomp	connections	on	the	port		61613		(which	is	the	default	port	of	the
Stomp	brokers).

See	the		stomp		example	which	shows	how	to	configure	an	Apache	ActiveMQ	Artemis	server	with	Stomp.

Limitations

Message	acknowledgements	are	not	transactional.	The	ACK	frame	can	not	be	part	of	a	transaction	(it	will	be	ignored	if	its		transaction	
header	is	set).

Stomp	1.1/1.2	Notes

Virtual	Hosting

Apache	ActiveMQ	Artemis	currently	doesn't	support	virtual	hosting,	which	means	the	'host'	header	in	CONNECT	fram	will	be	ignored.

Mapping	Stomp	destinations	to	Apache	ActiveMQ	Artemis	addresses	and	queues

Stomp	clients	deals	with	destinations	when	sending	messages	and	subscribing.	Destination	names	are	simply	strings	which	are	mapped
to	some	form	of	destination	on	the	server	-	how	the	server	translates	these	is	left	to	the	server	implementation.

In	Apache	ActiveMQ	Artemis,	these	destinations	are	mapped	to	addresses	and	queues.	When	a	Stomp	client	sends	a	message	(using	a
	SEND		frame),	the	specified	destination	is	mapped	to	an	address.	When	a	Stomp	client	subscribes	(or	unsubscribes)	for	a	destination
(using	a		SUBSCRIBE		or		UNSUBSCRIBE		frame),	the	destination	is	mapped	to	an	Apache	ActiveMQ	Artemis	queue.

STOMP	heart-beating	and	connection-ttl

Well	behaved	STOMP	clients	will	always	send	a	DISCONNECT	frame	before	closing	their	connections.	In	this	case	the	server	will	clear
up	any	server	side	resources	such	as	sessions	and	consumers	synchronously.	However	if	STOMP	clients	exit	without	sending	a
DISCONNECT	frame	or	if	they	crash	the	server	will	have	no	way	of	knowing	immediately	whether	the	client	is	still	alive	or	not.
STOMP	connections	therefore	default	to	a	connection-ttl	value	of	1	minute	(see	chapter	on	connection-ttl	for	more	information.	This
value	can	be	overridden	using	the		connection-ttl-override		property	or	if	you	need	a	specific	connectionTtl	for	your	stomp
connections	without	affecting	the	broker-wide		connection-ttl-override		setting,	you	can	configure	your	stomp	acceptor	with	the
"connectionTtl"	property,	which	is	used	to	set	the	ttl	for	connections	that	are	created	from	that	acceptor.	For	example:

<acceptor	name="stomp-acceptor">tcp://localhost:61613?protocols=STOMP;connectionTtl=20000</acceptor>

The	above	configuration	will	make	sure	that	any	Stomp	connection	that	is	created	from	that	acceptor	and	does	not	include	a		heart-beat	
header	or	disables	client-to-server	heart-beats	by	specifying	a		0		value	will	have	its	connection-ttl	set	to	20	seconds.	The
	connectionTtl		set	on	an	acceptor	will	take	precedence	over		connection-ttl-override	.	The	default		connectionTtl		is	60,000
milliseconds.

Since	Stomp	1.0	does	not	support	heart-beating	then	all	connections	from	Stomp	1.0	clients	will	have	a	connection	TTL	imposed	upon
them	by	the	broker	based	on	the	aforementioned	configuration	options.	Likewise,	any	Stomp	1.1	or	1.2	clients	that	don't	specify	a
	heart-beat		header	or	disable	client-to-server	heart-beating	(e.g.	by	sending		0,X		in	the		heart-beat		header)	will	have	a	connection
TTL	imposed	upon	them	by	the	broker.

Protocols	and	Interoperability

215



For	Stomp	1.1	and	1.2	clients	which	send	a	non-zero	client-to-server		heart-beat		header	value	then	their	connection	TTL	will	be	set
accordingly.	However,	the	broker	will	not	strictly	set	the	connection	TTL	to	the	same	value	as	the	specified	in	the		heart-beat		since
even	small	network	delays	could	then	cause	spurious	disconnects.	Instead,	the	client-to-server	value	in	the		heart-beat		will	be
multiplied	by	the		heartBeatConnectionTtlModifer		specified	on	the	acceptor.	The		heartBeatConnectionTtlModifer		is	a	decimal	value	that
defaults	to		2.0		so	for	example,	if	a	client	sends	a		heart-beat		header	of		1000,0		the	the	connection	TTL	will	be	set	to		2000		so	that
the	data	or	ping	frames	sent	every	1000	milliseconds	will	have	a	sufficient	cushion	so	as	not	to	be	considered	late	and	trigger	a
disconnect.	This	is	also	in	accordance	with	the	Stomp	1.1	and	1.2	specifications	which	both	state,	"because	of	timing	inaccuracies,	the
receiver	SHOULD	be	tolerant	and	take	into	account	an	error	margin."

The	minimum	and	maximum	connection	TTL	allowed	can	also	be	specified	on	the	acceptor	via	the		connectionTtlMin		and
	connectionTtlMax		properties	respectively.	The	default		connectionTtlMin		is	1000	and	the	default		connectionTtlMax		is	Java's
	Long.MAX_VALUE		meaning	there	essentially	is	no	max	connection	TTL	by	default.	Keep	in	mind	that	the		heartBeatConnectionTtlModifer	
is	relevant	here.	For	example,	if	a	client	sends	a		heart-beat		header	of		20000,0		and	the	acceptor	is	using	a		connectionTtlMax		of
	30000		and	a	default		heartBeatConnectionTtlModifer		of		2.0		then	the	connection	TTL	would	be		40000		(i.e.		20000		*		2.0	)	which
would	exceed	the		connectionTtlMax	.	In	this	case	the	server	would	respond	to	the	client	with	a		heart-beat		header	of		0,15000		(i.e.
	30000		/		2.0	).	As	described	previously,	this	is	to	make	sure	there	is	a	sufficient	cushion	for	the	client	heart-beats	in	accordance	with
the	Stomp	1.1	and	1.2	specifications.	The	same	kind	of	calculation	is	done	for		connectionTtlMin	.

The	minimum	server-to-client	heart-beat	value	is	500ms.

Note

Please	note	that	the	STOMP	protocol	version	1.0	does	not	contain	any	heart-beat	frame.	It	is	therefore	the	user's	responsibility
to	make	sure	data	is	sent	within	connection-ttl	or	the	server	will	assume	the	client	is	dead	and	clean	up	server	side	resources.
With		Stomp	1.1		users	can	use	heart-beats	to	maintain	the	life	cycle	of	stomp	connections.

Selector/Filter	expressions

Stomp	subscribers	can	specify	an	expression	used	to	select	or	filter	what	the	subscriber	receives	using	the		selector		header.	The	filter
expression	syntax	follows	the	core	filter	syntax	described	in	the	Filter	Expressions	documentation.

Stomp	and	JMS	interoperability

Using	JMS	destinations

As	explained	in	Mapping	JMS	Concepts	to	the	Core	API,	JMS	destinations	are	also	mapped	to	Apache	ActiveMQ	Artemis	addresses
and	queues.	If	you	want	to	use	Stomp	to	send	messages	to	JMS	destinations,	the	Stomp	destinations	must	follow	the	same	convention:

send	or	subscribe	to	a	JMS	Queue	by	prepending	the	queue	name	by		jms.queue.	.

For	example,	to	send	a	message	to	the		orders		JMS	Queue,	the	Stomp	client	must	send	the	frame:

SEND

destination:jms.queue.orders

hello	queue	orders

^@

send	or	subscribe	to	a	JMS	Topic	by	prepending	the	topic	name	by		jms.topic.	.
For	example	to	subscribe	to	the		stocks		JMS	Topic,	the	Stomp	client	must	send	the	frame:

SUBSCRIBE

destination:jms.topic.stocks

^@

Protocols	and	Interoperability

216



Sending	and	consuming	Stomp	message	from	JMS	or	Apache	ActiveMQ	Artemis	Core
API

Stomp	is	mainly	a	text-orientated	protocol.	To	make	it	simpler	to	interoperate	with	JMS	and	Apache	ActiveMQ	Artemis	Core	API,	our
Stomp	implementation	checks	for	presence	of	the		content-length		header	to	decide	how	to	map	a	Stomp	1.0	message	to	a	JMS
Message	or	a	Core	message.

If	the	Stomp	1.0	message	does	not	have	a		content-length		header,	it	will	be	mapped	to	a	JMS	TextMessage	or	a	Core	message	with	a
single	nullable	SimpleString	in	the	body	buffer.

Alternatively,	if	the	Stomp	1.0	message	has	a		content-length		header,	it	will	be	mapped	to	a	JMS	BytesMessage	or	a	Core	message	with
a	byte[]	in	the	body	buffer.

The	same	logic	applies	when	mapping	a	JMS	message	or	a	Core	message	to	Stomp.	A	Stomp	1.0	client	can	check	the	presence	of	the
	content-length		header	to	determine	the	type	of	the	message	body	(String	or	bytes).

Durable	Subscriptions

The		SUBSCRIBE		and		UNSUBSCRIBE		frames	can	be	augmented	with	special	headers	to	create	and	destroy	durable	subscriptions
respectively.

To	create	a	durable	subscription	the		client-id		header	must	be	set	on	the		CONNECT		frame	and	the		durable-subscription-name		must	be
set	on	the		SUBSCRIBE		frame.	The	combination	of	these	two	headers	will	form	the	identity	of	the	durable	subscription.

To	delete	a	durable	subscription	the		client-id		header	must	be	set	on	the		CONNECT		frame	and	the		durable-subscription-name		must	be
set	on	the		UNSUBSCRIBE		frame.	The	values	for	these	headers	should	match	what	was	set	on	the		SUBSCRIBE		frame	to	delete	the
corresponding	durable	subscription.

It	is	possible	to	pre-configure	durable	subscriptions	since	the	Stomp	implementation	creates	the	queue	used	for	the	durable	subscription
in	a	deterministic	way	(i.e.	using	the	format	of		client-id	.	subscription-name	).	For	example,	if	you	wanted	to	configure	a	durable
subscription	on	the	JMS	topic		myTopic		with	a	client-id	of		myclientid		and	a	subscription	name	of		mysubscriptionname		then	first
you'd	configure	the	topic:

			<jms	xmlns="urn:activemq:jms">

						...

						<topic	name="myTopic"/>

						...

			</jms>

Then	configure	the	durable	subscription:

			<core	xmlns="urn:activemq:core">

						...

						<queues>

									<queue	name="myclientid.mysubscription">

												<address>jms.topic.myTopic</address>

									</queue>

						</queues>

						...

			</core>

Message	IDs	for	Stomp	messages

When	receiving	Stomp	messages	via	a	JMS	consumer	or	a	QueueBrowser,	the	messages	have	no	properties	like	JMSMessageID	by
default.	However	this	may	bring	some	inconvenience	to	clients	who	wants	an	ID	for	their	purpose.	Apache	ActiveMQ	Artemis	Stomp
provides	a	parameter	to	enable	message	ID	on	each	incoming	Stomp	message.	If	you	want	each	Stomp	message	to	have	a	unique	ID,	just
set	the		stompEnableMessageId		to	true.	For	example:

<acceptor	name="stomp-acceptor">tcp://localhost:61613?protocols=STOMP;stompEnableMessageId=true</acceptor>

Protocols	and	Interoperability

217



When	the	server	starts	with	the	above	setting,	each	stomp	message	sent	through	this	acceptor	will	have	an	extra	property	added.	The
property	key	is		amq-message-id		and	the	value	is	a	String	representation	of	a	long	type	internal	message	id	prefixed	with	"	STOMP	",	like:

amq-message-id	:	STOMP12345

If		stomp-enable-message-id		is	not	specified	in	the	configuration,	default	is		false	.

Handling	of	Large	Messages	with	Stomp

Stomp	clients	may	send	very	large	bodys	of	frames	which	can	exceed	the	size	of	Apache	ActiveMQ	Artemis	server's	internal	buffer,
causing	unexpected	errors.	To	prevent	this	situation	from	happening,	Apache	ActiveMQ	Artemis	provides	a	stomp	configuration
attribute		stompMinLargeMessageSize	.	This	attribute	can	be	configured	inside	a	stomp	acceptor,	as	a	parameter.	For	example:

			<acceptor	name="stomp-acceptor">tcp://localhost:61613?protocols=STOMP;stompMinLargeMessageSize=10240</acceptor>

The	type	of	this	attribute	is	integer.	When	this	attributed	is	configured,	Apache	ActiveMQ	Artemis	server	will	check	the	size	of	the
body	of	each	Stomp	frame	arrived	from	connections	established	with	this	acceptor.	If	the	size	of	the	body	is	equal	or	greater	than	the
value	of		stompMinLargeMessageSize	,	the	message	will	be	persisted	as	a	large	message.	When	a	large	message	is	delievered	to	a	stomp
consumer,	the	HorentQ	server	will	automatically	handle	the	conversion	from	a	large	message	to	a	normal	message,	before	sending	it	to
the	client.

If	a	large	message	is	compressed,	the	server	will	uncompressed	it	before	sending	it	to	stomp	clients.	The	default	value	of
	stompMinLargeMessageSize		is	the	same	as	the	default	value	of	min-large-message-size.

Stomp	Over	Web	Sockets

Apache	ActiveMQ	Artemis	also	support	Stomp	over	Web	Sockets.	Modern	web	browser	which	support	Web	Sockets	can	send	and
receive	Stomp	messages	from	Apache	ActiveMQ	Artemis.

Stomp	over	Web	Sockets	is	supported	via	the	normal	Stomp	acceptor:

<acceptor	name="stomp-ws-acceptor">tcp://localhost:61614?protocols=STOMP</acceptor>

With	this	configuration,	Apache	ActiveMQ	Artemis	will	accept	Stomp	connections	over	Web	Sockets	on	the	port		61614	.	Web	browser
can	then	connect	to		ws://<server>:61614		using	a	Web	Socket	to	send	and	receive	Stomp	messages.

A	companion	JavaScript	library	to	ease	client-side	development	is	available	from	GitHub	(please	see	its	documentation	for	a	complete
description).

The		stomp-websockets		example	shows	how	to	configure	Apache	ActiveMQ	Artemis	server	to	have	web	browsers	and	Java
applications	exchanges	messages	on	a	JMS	topic.

REST
Please	see	Rest	Interface

Protocols	and	Interoperability

218

http://dev.w3.org/html5/websockets/
http://github.com/jmesnil/stomp-websocket
http://jmesnil.net/stomp-websocket/doc/


Tools
You	can	use	the	artemis	cli	interface	to	execute	data	maintenance	tools:

This	is	a	list	of	sub-commands	available

Name Description

exp Export	the	message	data	using	a	special	and	independent	XML	format

imp Imports	the	journal	to	a	running	broker	using	the	output	from	expt

data Prints	a	report	about	journal	records	and	summary	of	existent	records,	as	well	a	report	on	paging

encode shows	an	internal	format	of	the	journal	encoded	to	String

decode imports	the	internal	journal	format	from	encode

You	can	use	the	help	at	the	tool	for	more	information	on	how	to	execute	each	of	the	tools.	For	example:

$	./artemis	help	data	print

NAME

								artemis	data	print	-	Print	data	records	information	(WARNING:	don't	use

								while	a	production	server	is	running)

SYNOPSIS

								artemis	data	print	[--bindings	<binding>]	[--journal	<journal>]

																[--paging	<paging>]

OPTIONS

								--bindings	<binding>

												The	folder	used	for	bindings	(default	../data/bindings)

								--journal	<journal>

												The	folder	used	for	messages	journal	(default	../data/journal)

								--paging	<paging>

												The	folder	used	for	paging	(default	../data/paging)

For	a	full	list	of	data	tools	commands	available	use:

NAME

								artemis	data	-	data	tools	group

								(print|exp|imp|exp|encode|decode|compact)	(example	./artemis	data	print)

SYNOPSIS

								artemis	data

								artemis	data	compact	[--broker	<brokerConfig>]	[--verbose]

																[--paging	<paging>]	[--journal	<journal>]

																[--large-messages	<largeMessges>]	[--bindings	<binding>]

								artemis	data	decode	[--broker	<brokerConfig>]	[--suffix	<suffix>]

																[--verbose]	[--paging	<paging>]	[--prefix	<prefix>]	[--file-size	<size>]

																[--directory	<directory>]	--input	<input>	[--journal	<journal>]

																[--large-messages	<largeMessges>]	[--bindings	<binding>]

								artemis	data	encode	[--directory	<directory>]	[--broker	<brokerConfig>]

																[--suffix	<suffix>]	[--verbose]	[--paging	<paging>]	[--prefix	<prefix>]

																[--file-size	<size>]	[--journal	<journal>]

																[--large-messages	<largeMessges>]	[--bindings	<binding>]

								artemis	data	exp	[--broker	<brokerConfig>]	[--verbose]

																[--paging	<paging>]	[--journal	<journal>]

																[--large-messages	<largeMessges>]	[--bindings	<binding>]

								artemis	data	imp	[--host	<host>]	[--verbose]	[--port	<port>]

																[--password	<password>]	[--transaction]	--input	<input>	[--user	<user>]

								artemis	data	print	[--broker	<brokerConfig>]	[--verbose]

																[--paging	<paging>]	[--journal	<journal>]

Tools

219



																[--large-messages	<largeMessges>]	[--bindings	<binding>]

COMMANDS

								With	no	arguments,	Display	help	information

								print

												Print	data	records	information	(WARNING:	don't	use	while	a

												production	server	is	running)

												With	--broker	option,	This	would	override	the	broker	configuration

												from	the	bootstrap

												With	--verbose	option,	Adds	more	information	on	the	execution

												With	--paging	option,	The	folder	used	for	paging	(default	from

												broker.xml)

												With	--journal	option,	The	folder	used	for	messages	journal	(default

												from	broker.xml)

												With	--large-messages	option,	The	folder	used	for	large-messages

												(default	from	broker.xml)

												With	--bindings	option,	The	folder	used	for	bindings	(default	from

												broker.xml)

								exp

												Export	all	message-data	using	an	XML	that	could	be	interpreted	by

												any	system.

												With	--broker	option,	This	would	override	the	broker	configuration

												from	the	bootstrap

												With	--verbose	option,	Adds	more	information	on	the	execution

												With	--paging	option,	The	folder	used	for	paging	(default	from

												broker.xml)

												With	--journal	option,	The	folder	used	for	messages	journal	(default

												from	broker.xml)

												With	--large-messages	option,	The	folder	used	for	large-messages

												(default	from	broker.xml)

												With	--bindings	option,	The	folder	used	for	bindings	(default	from

												broker.xml)

								imp

												Import	all	message-data	using	an	XML	that	could	be	interpreted	by

												any	system.

												With	--host	option,	The	host	used	to	import	the	data	(default

												localhost)

												With	--verbose	option,	Adds	more	information	on	the	execution

												With	--port	option,	The	port	used	to	import	the	data	(default	61616)

												With	--password	option,	User	name	used	to	import	the	data.	(default

												null)

												With	--transaction	option,	If	this	is	set	to	true	you	will	need	a

												whole	transaction	to	commit	at	the	end.	(default	false)

												With	--input	option,	The	input	file	name	(default=exp.dmp)

												With	--user	option,	User	name	used	to	import	the	data.	(default

												null)

								decode

												Decode	a	journal's	internal	format	into	a	new	journal	set	of	files

Tools

220



												With	--broker	option,	This	would	override	the	broker	configuration

												from	the	bootstrap

												With	--suffix	option,	The	journal	suffix	(default	amq)

												With	--verbose	option,	Adds	more	information	on	the	execution

												With	--paging	option,	The	folder	used	for	paging	(default	from

												broker.xml)

												With	--prefix	option,	The	journal	prefix	(default	activemq-data)

												With	--file-size	option,	The	journal	size	(default	10485760)

												With	--directory	option,	The	journal	folder	(default	journal	folder

												from	broker.xml)

												With	--input	option,	The	input	file	name	(default=exp.dmp)

												With	--journal	option,	The	folder	used	for	messages	journal	(default

												from	broker.xml)

												With	--large-messages	option,	The	folder	used	for	large-messages

												(default	from	broker.xml)

												With	--bindings	option,	The	folder	used	for	bindings	(default	from

												broker.xml)

								encode

												Encode	a	set	of	journal	files	into	an	internal	encoded	data	format

												With	--directory	option,	The	journal	folder	(default	the	journal

												folder	from	broker.xml)

												With	--broker	option,	This	would	override	the	broker	configuration

												from	the	bootstrap

												With	--suffix	option,	The	journal	suffix	(default	amq)

												With	--verbose	option,	Adds	more	information	on	the	execution

												With	--paging	option,	The	folder	used	for	paging	(default	from

												broker.xml)

												With	--prefix	option,	The	journal	prefix	(default	activemq-data)

												With	--file-size	option,	The	journal	size	(default	10485760)

												With	--journal	option,	The	folder	used	for	messages	journal	(default

												from	broker.xml)

												With	--large-messages	option,	The	folder	used	for	large-messages

												(default	from	broker.xml)

												With	--bindings	option,	The	folder	used	for	bindings	(default	from

												broker.xml)

								compact

												Compacts	the	journal	of	a	non	running	server

												With	--broker	option,	This	would	override	the	broker	configuration

												from	the	bootstrap

												With	--verbose	option,	Adds	more	information	on	the	execution

												With	--paging	option,	The	folder	used	for	paging	(default	from

												broker.xml)

												With	--journal	option,	The	folder	used	for	messages	journal	(default

												from	broker.xml)

												With	--large-messages	option,	The	folder	used	for	large-messages

Tools

221



												(default	from	broker.xml)

												With	--bindings	option,	The	folder	used	for	bindings	(default	from

												broker.xml)

Tools

222



Maven	Plugins
Since	Artemis	1.1.0	Artemis	provides	the	possibility	of	using	Maven	Plugins	to	manage	the	life	cycle	of	servers.

When	to	use	it

These	Maven	plugins	were	initially	created	to	manage	server	instances	across	our	examples.	They	can	create	a	server,	start,	and	do	any
CLI	operation	over	servers.

You	could	for	example	use	these	maven	plugins	on	your	testsuite	or	deployment	automation.

Goals

There	are	three	goals	that	you	can	use

create

This	will	create	a	server	accordingly	to	your	arguments.	You	can	do	some	extra	tricks	here	such	as	installing	extra	libraries	for	external
modules.

cli

This	will	perform	any	CLI	operation.	This	is	basically	a	maven	expression	of	the	CLI	classes

runClient

This	is	a	simple	wrapper	around	classes	implementing	a	static	main	call.	Notice	that	this	won't	spawn	a	new	VM	or	new	Thread.

Declaration
On	your	pom,	use	the	plugins	section:

			<build>

						<plugins>

									<plugin>

												<groupId>org.apache.activemq</groupId>

												<artifactId>artemis-maven-plugin</artifactId>

create	goal

I	won't	detail	every	operation	of	the	create	plugin	here,	but	I	will	try	to	describe	the	main	parameters:

Name Description

configuration A	place	that	will	hold	any	file	to	replace	on	the	configuration.	For	instance	if	you	are	providing	your	own
broker.xml.	Default	is	"${basedir}/target/classes/activemq/server0"

home The	location	where	you	downloaded	and	installed	artemis.	Default	is	"${activemq.basedir}"

alternateHome This	is	used	case	you	have	two	possible	locations	for	your	home	(e.g.	one	under	compile	and	one	under
production

instance Where	the	server	is	going	to	be	installed.	Default	is	"${basedir}/target/server0"

liblist[] A	list	of	libraries	to	be	installed	under	./lib.	ex:	"org.jgroups:jgroups:3.6.0.Final"

Maven	Plugin

223



Example:

<executions>

			<execution>

						<id>create</id>

						<goals>

									<goal>create</goal>

						</goals>

						<configuration>

									<ignore>${noServer}</ignore>

						</configuration>

			</execution>

cli	goal

Some	properties	for	the	CLI

Name Description

configuration A	place	that	will	hold	any	file	to	replace	on	the	configuration.	For	instance	if	you	are	providing	your	own
broker.xml.	Default	is	"${basedir}/target/classes/activemq/server0"

home The	location	where	you	downloaded	and	installed	artemis.	Default	is	"${activemq.basedir}"

alternateHome This	is	used	case	you	have	two	possible	locations	for	your	home	(e.g.	one	under	compile	and	one	under
production

instance Where	the	server	is	going	to	be	installed.	Default	is	"${basedir}/target/server0"

Similarly	to	the	create	plugin,	the	artemis	exampels	are	using	the	cli	plugin.	Look	at	them	for	concrete	examples.

Example:

<execution>

		<id>start</id>

		<goals>

					<goal>cli</goal>

		</goals>

		<configuration>

					<spawn>true</spawn>

					<ignore>${noServer}</ignore>

					<testURI>tcp://localhost:61616</testURI>

					<args>

								<param>run</param>

					</args>

		</configuration>

</execution>

runClient	goal

This	is	a	simple	solution	for	running	classes	implementing	the	main	method.

Name Description

clientClass A	class	implement	a	static	void	main(String	arg[])

args A	string	array	of	arguments	passed	to	the	method

Example:

<execution>

		<id>runClient</id>

		<goals>

					<goal>runClient</goal>

Maven	Plugin

224



		</goals>

		<configuration>

					<clientClass>org.apache.activemq.artemis.jms.example.QueueExample</clientClass>

		</configuration>

</execution>

Complete	example

The	following	example	is	a	copy	of	the	/examples/features/standard/queue	example.	You	may	refer	to	it	directly	under	the	examples
directory	tree.

<project	xmlns="http://maven.apache.org/POM/4.0.0"	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

									xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	http://maven.apache.org/maven-v4_0_0.xsd">

			<modelVersion>4.0.0</modelVersion>

			<parent>

						<groupId>org.apache.activemq.examples.broker</groupId>

						<artifactId>jms-examples</artifactId>

						<version>1.1.0</version>

			</parent>

			<artifactId>queue</artifactId>

			<packaging>jar</packaging>

			<name>ActiveMQ	Artemis	JMS	Queue	Example</name>

			<properties>

						<activemq.basedir>${project.basedir}/../../../..</activemq.basedir>

			</properties>

			<dependencies>

						<dependency>

									<groupId>org.apache.activemq</groupId>

									<artifactId>artemis-jms-client</artifactId>

									<version>${project.version}</version>

						</dependency>

			</dependencies>

			<build>

						<plugins>

									<plugin>

												<groupId>org.apache.activemq</groupId>

												<artifactId>artemis-maven-plugin</artifactId>

												<executions>

															<execution>

																		<id>create</id>

																		<goals>

																					<goal>create</goal>

																		</goals>

																		<configuration>

																					<ignore>${noServer}</ignore>

																		</configuration>

															</execution>

															<execution>

																		<id>start</id>

																		<goals>

																					<goal>cli</goal>

																		</goals>

																		<configuration>

																					<spawn>true</spawn>

																					<ignore>${noServer}</ignore>

																					<testURI>tcp://localhost:61616</testURI>

																					<args>

																								<param>run</param>

																					</args>

																		</configuration>

															</execution>

															<execution>

																		<id>runClient</id>

																		<goals>

Maven	Plugin

225



																					<goal>runClient</goal>

																		</goals>

																		<configuration>

																					<clientClass>org.apache.activemq.artemis.jms.example.QueueExample</clientClass>

																		</configuration>

															</execution>

															<execution>

																		<id>stop</id>

																		<goals>

																					<goal>cli</goal>

																		</goals>

																		<configuration>

																					<ignore>${noServer}</ignore>

																					<args>

																								<param>stop</param>

																					</args>

																		</configuration>

															</execution>

												</executions>

												<dependencies>

															<dependency>

																		<groupId>org.apache.activemq.examples.broker</groupId>

																		<artifactId>queue</artifactId>

																		<version>${project.version}</version>

															</dependency>

												</dependencies>

									</plugin>

						</plugins>

			</build>

</project>

Maven	Plugin

226



Unit	Testing
The	package		artemis-junit		provides	tools	to	facilitate	how	to	run	Artemis	resources	inside	Junit	Tests.

These	are	provided	as	junit	rules	and	can	make	it	easier	to	embed	Messaging	functionality	on	your	tests.

Example

Import	this	on	your	pom.xml

<dependency>

		<groupId>org.apache.activemq</groupId>

		<artifactId>artemis-junit</artifactId>

		<!--	replace	this	for	the	version	you	are	using	-->

		<version>1.5.0</version>

		<scope>test</scope>

</dependency>

Declare	a	rule	on	your	JUnit	Test

import	org.apache.activemq.artemis.junit.EmbeddedJMSResource;

import	org.junit.Rule;

import	org.junit.Test;

public	class	MyTest	{

			@Rule

			public	EmbeddedJMSResource	resource	=	new	EmbeddedJMSResource();

			@Test

			public	void	myTest()	{

			}

}

This	will	start	a	server	that	will	be	available	for	your	test:

ain]	17:00:16,644	INFO		[org.apache.activemq.artemis.core.server]	AMQ221000:	live	Message	Broker	is	starting	with	configuratio

n	Broker	Configuration	(clustered=false,journalDirectory=data/journal,bindingsDirectory=data/bindings,largeMessagesDirectory=d

ata/largemessages,pagingDirectory=data/paging)

[main]	17:00:16,666	INFO		[org.apache.activemq.artemis.core.server]	AMQ221045:	libaio	is	not	available,	switching	the	configur

ation	into	NIO

[main]	17:00:16,688	INFO		[org.apache.activemq.artemis.core.server]	AMQ221043:	Protocol	module	found:	[artemis-server].	Adding

	protocol	support	for:	CORE

[main]	17:00:16,801	INFO		[org.apache.activemq.artemis.core.server]	AMQ221007:	Server	is	now	live

[main]	17:00:16,801	INFO		[org.apache.activemq.artemis.core.server]	AMQ221001:	Apache	ActiveMQ	Artemis	Message	Broker	version	

1.5.0-SNAPSHOT	[embedded-jms-server,	nodeID=39e78380-842c-11e6-9e43-f45c8992f3c7]	

[main]	17:00:16,891	INFO		[org.apache.activemq.artemis.core.server]	AMQ221002:	Apache	ActiveMQ	Artemis	Message	Broker	version	

1.5.0-SNAPSHOT	[39e78380-842c-11e6-9e43-f45c8992f3c7]	stopped,	uptime	0.272	seconds

Ordering	rules

This	is	actually	a	Junit	feature,	but	this	could	be	helpful	on	pre-determining	the	order	on	which	rules	are	executed.

			ActiveMQDynamicProducerResource	producer	=	new	ActiveMQDynamicProducerResource(server.getVmURL());

			@Rule

			public	RuleChain	ruleChain	=	RuleChain.outerRule(new	ThreadLeakCheckRule()).around(server).around(producer);

Unit	Testing

227



Available	Rules

Name Description

EmbeddedActiveMQResource It	will	run	a	Server,	without	the	JMS	manager

EmbeddedJMSResource It	will	run	a	Server,	including	the	JMS	Manager

ActiveMQConsumerResource It	will	automate	the	creation	of	a	consumer

ActiveMQProducerResource It	will	automate	the	creation	of	a	producer

ThreadLeakCheckRule It	will	check	that	all	threads	have	been	finished	after	the	test	is	finished

Unit	Testing

228



Performance	Tuning
In	this	chapter	we'll	discuss	how	to	tune	Apache	ActiveMQ	Artemis	for	optimum	performance.

Tuning	persistence

Put	the	message	journal	on	its	own	physical	volume.	If	the	disk	is	shared	with	other	processes	e.g.	transaction	co-ordinator,
database	or	other	journals	which	are	also	reading	and	writing	from	it,	then	this	may	greatly	reduce	performance	since	the	disk	head
may	be	skipping	all	over	the	place	between	the	different	files.	One	of	the	advantages	of	an	append	only	journal	is	that	disk	head
movement	is	minimised	-	this	advantage	is	destroyed	if	the	disk	is	shared.	If	you're	using	paging	or	large	messages	make	sure	they're
ideally	put	on	separate	volumes	too.

Minimum	number	of	journal	files.	Set		journal-min-files		to	a	number	of	files	that	would	fit	your	average	sustainable	rate.	This
number	represents	the	lower	threshold	of	the	journal	file	pool.

To	set	the	upper	threshold	of	the	journal	file	pool.	(	journal-min-files		being	the	lower	threshold).	Set		journal-pool-files		to	a
number	that	represents	something	near	your	maximum	expected	load.	The	journal	will	spill	over	the	pool	should	it	need	to,	but	will
shrink	back	to	the	upper	threshold,	when	possible.	This	allows	reuse	of	files,	without	taking	up	more	disk	space	than	required.	If
you	see	new	files	being	created	on	the	journal	data	directory	too	often,	i.e.	lots	of	data	is	being	persisted,	you	need	to	increase	the
journal-pool-size,	this	way	the	journal	would	reuse	more	files	instead	of	creating	new	data	files,	increasing	performance

Journal	file	size.	The	journal	file	size	should	be	aligned	to	the	capacity	of	a	cylinder	on	the	disk.	The	default	value	10MiB	should	be
enough	on	most	systems.

Use	AIO	journal.	If	using	Linux,	try	to	keep	your	journal	type	as	AIO.	AIO	will	scale	better	than	Java	NIO.

Tune		journal-buffer-timeout	.	The	timeout	can	be	increased	to	increase	throughput	at	the	expense	of	latency.

If	you're	running	AIO	you	might	be	able	to	get	some	better	performance	by	increasing		journal-max-io	.	DO	NOT	change	this
parameter	if	you	are	running	NIO.

Tuning	JMS

There	are	a	few	areas	where	some	tweaks	can	be	done	if	you	are	using	the	JMS	API

Disable	message	id.	Use	the		setDisableMessageID()		method	on	the		MessageProducer		class	to	disable	message	ids	if	you	don't	need
them.	This	decreases	the	size	of	the	message	and	also	avoids	the	overhead	of	creating	a	unique	ID.

Disable	message	timestamp.	Use	the		setDisableMessageTimeStamp()		method	on	the		MessageProducer		class	to	disable	message
timestamps	if	you	don't	need	them.

Avoid		ObjectMessage	.		ObjectMessage		is	convenient	but	it	comes	at	a	cost.	The	body	of	a		ObjectMessage		uses	Java	serialization
to	serialize	it	to	bytes.	The	Java	serialized	form	of	even	small	objects	is	very	verbose	so	takes	up	a	lot	of	space	on	the	wire,	also
Java	serialization	is	slow	compared	to	custom	marshalling	techniques.	Only	use		ObjectMessage		if	you	really	can't	use	one	of	the
other	message	types,	i.e.	if	you	really	don't	know	the	type	of	the	payload	until	run-time.

Avoid		AUTO_ACKNOWLEDGE	.		AUTO_ACKNOWLEDGE		mode	requires	an	acknowledgement	to	be	sent	from	the	server	for	each	message
received	on	the	client,	this	means	more	traffic	on	the	network.	If	you	can,	use		DUPS_OK_ACKNOWLEDGE		or	use		CLIENT_ACKNOWLEDGE		or
a	transacted	session	and	batch	up	many	acknowledgements	with	one	acknowledge/commit.

Avoid	durable	messages.	By	default	JMS	messages	are	durable.	If	you	don't	really	need	durable	messages	then	set	them	to	be	non-
durable.	Durable	messages	incur	a	lot	more	overhead	in	persisting	them	to	storage.

Batch	many	sends	or	acknowledgements	in	a	single	transaction.	Apache	ActiveMQ	Artemis	will	only	require	a	network	round	trip
on	the	commit,	not	on	every	send	or	acknowledgement.

Troubleshooting	and	Performance	Tuning

229



Other	Tunings

There	are	various	other	places	in	Apache	ActiveMQ	Artemis	where	we	can	perform	some	tuning:

Use	Asynchronous	Send	Acknowledgements.	If	you	need	to	send	durable	messages	non	transactionally	and	you	need	a	guarantee
that	they	have	reached	the	server	by	the	time	the	call	to	send()	returns,	don't	set	durable	messages	to	be	sent	blocking,	instead	use
asynchronous	send	acknowledgements	to	get	your	acknowledgements	of	send	back	in	a	separate	stream,	see	Guarantees	of	sends
and	commits	for	more	information	on	this.

Use	pre-acknowledge	mode.	With	pre-acknowledge	mode,	messages	are	acknowledged		before		they	are	sent	to	the	client.	This
reduces	the	amount	of	acknowledgement	traffic	on	the	wire.	For	more	information	on	this,	see	Extra	Acknowledge	Modes.

Disable	security.	You	may	get	a	small	performance	boost	by	disabling	security	by	setting	the		security-enabled		parameter	to
	false		in		broker.xml	.

Disable	persistence.	If	you	don't	need	message	persistence,	turn	it	off	altogether	by	setting		persistence-enabled		to	false	in
	broker.xml	.

Sync	transactions	lazily.	Setting		journal-sync-transactional		to		false		in		broker.xml		can	give	you	better	transactional	persistent
performance	at	the	expense	of	some	possibility	of	loss	of	transactions	on	failure.	See	Guarantees	of	sends	and	commits	for	more
information.

Sync	non	transactional	lazily.	Setting		journal-sync-non-transactional		to		false		in		broker.xml		can	give	you	better	non-
transactional	persistent	performance	at	the	expense	of	some	possibility	of	loss	of	durable	messages	on	failure.	See	Guarantees	of
sends	and	commits	for	more	information.

Send	messages	non	blocking.	Setting		block-on-durable-send		and		block-on-non-durable-send		to		false		in	the	jms	config	(if	you're
using	JMS	and	JNDI)	or	directly	on	the	ServerLocator.	This	means	you	don't	have	to	wait	a	whole	network	round	trip	for	every
message	sent.	See	Guarantees	of	sends	and	commits	for	more	information.

If	you	have	very	fast	consumers,	you	can	increase	consumer-window-size.	This	effectively	disables	consumer	flow	control.

Use	the	core	API	not	JMS.	Using	the	JMS	API	you	will	have	slightly	lower	performance	than	using	the	core	API,	since	all	JMS
operations	need	to	be	translated	into	core	operations	before	the	server	can	handle	them.	If	using	the	core	API	try	to	use	methods
that	take		SimpleString		as	much	as	possible.		SimpleString	,	unlike	java.lang.String	does	not	require	copying	before	it	is	written	to
the	wire,	so	if	you	re-use		SimpleString		instances	between	calls	then	you	can	avoid	some	unnecessary	copying.

Tuning	Transport	Settings

TCP	buffer	sizes.	If	you	have	a	fast	network	and	fast	machines	you	may	get	a	performance	boost	by	increasing	the	TCP	send	and
receive	buffer	sizes.	See	the	Configuring	the	Transport	for	more	information	on	this.

Note

Note	that	some	operating	systems	like	later	versions	of	Linux	include	TCP	auto-tuning	and	setting	TCP	buffer	sizes
manually	can	prevent	auto-tune	from	working	and	actually	give	you	worse	performance!

Increase	limit	on	file	handles	on	the	server.	If	you	expect	a	lot	of	concurrent	connections	on	your	servers,	or	if	clients	are	rapidly
opening	and	closing	connections,	you	should	make	sure	the	user	running	the	server	has	permission	to	create	sufficient	file	handles.

This	varies	from	operating	system	to	operating	system.	On	Linux	systems	you	can	increase	the	number	of	allowable	open	file
handles	in	the	file		/etc/security/limits.conf		e.g.	add	the	lines

serveruser					soft				nofile		20000

serveruser					hard				nofile		20000

This	would	allow	up	to	20000	file	handles	to	be	open	by	the	user		serveruser	.

Troubleshooting	and	Performance	Tuning

230



Use		batch-delay		and	set		direct-deliver		to	false	for	the	best	throughput	for	very	small	messages.	Apache	ActiveMQ	Artemis
comes	with	a	preconfigured	connector/acceptor	pair	(	netty-throughput	)	in		broker.xml		and	JMS	connection	factory
(	ThroughputConnectionFactory	)	in		activemq-jms.xml	which	can	be	used	to	give	the	very	best	throughput,	especially	for	small
messages.	See	the	Configuring	the	Transport	for	more	information	on	this.

Tuning	the	VM

We	highly	recommend	you	use	the	latest	Java	JVM	for	the	best	performance.	We	test	internally	using	the	Sun	JVM,	so	some	of	these
tunings	won't	apply	to	JDKs	from	other	providers	(e.g.	IBM	or	JRockit)

Garbage	collection.	For	smooth	server	operation	we	recommend	using	a	parallel	garbage	collection	algorithm,	e.g.	using	the	JVM
argument		-XX:+UseParallelOldGC		on	Sun	JDKs.

Memory	settings.	Give	as	much	memory	as	you	can	to	the	server.	Apache	ActiveMQ	Artemis	can	run	in	low	memory	by	using
paging	(described	in	Paging)	but	if	it	can	run	with	all	queues	in	RAM	this	will	improve	performance.	The	amount	of	memory	you
require	will	depend	on	the	size	and	number	of	your	queues	and	the	size	and	number	of	your	messages.	Use	the	JVM	arguments		-
Xms		and		-Xmx		to	set	server	available	RAM.	We	recommend	setting	them	to	the	same	high	value.

Aggressive	options.	Different	JVMs	provide	different	sets	of	JVM	tuning	parameters,	for	the	Sun	Hotspot	JVM	the	full	list	of
options	is	available	here.	We	recommend	at	least	using		-XX:+AggressiveOpts		and		-XX:+UseFastAccessorMethods	.	You	may	get	some
mileage	with	the	other	tuning	parameters	depending	on	your	OS	platform	and	application	usage	patterns.

Avoiding	Anti-Patterns

Re-use	connections	/	sessions	/	consumers	/	producers.	Probably	the	most	common	messaging	anti-pattern	we	see	is	users	who
create	a	new	connection/session/producer	for	every	message	they	send	or	every	message	they	consume.	This	is	a	poor	use	of
resources.	These	objects	take	time	to	create	and	may	involve	several	network	round	trips.	Always	re-use	them.

Note

Some	popular	libraries	such	as	the	Spring	JMS	Template	are	known	to	use	these	anti-patterns.	If	you're	using	Spring	JMS
Template	and	you're	getting	poor	performance	you	know	why.	Don't	blame	Apache	ActiveMQ	Artemis!	The	Spring	JMS
Template	can	only	safely	be	used	in	an	app	server	which	caches	JMS	sessions	(e.g.	using	JCA),	and	only	then	for	sending
messages.	It	cannot	be	safely	be	used	for	synchronously	consuming	messages,	even	in	an	app	server.

Avoid	fat	messages.	Verbose	formats	such	as	XML	take	up	a	lot	of	space	on	the	wire	and	performance	will	suffer	as	result.	Avoid
XML	in	message	bodies	if	you	can.

Don't	create	temporary	queues	for	each	request.	This	common	anti-pattern	involves	the	temporary	queue	request-response	pattern.
With	the	temporary	queue	request-response	pattern	a	message	is	sent	to	a	target	and	a	reply-to	header	is	set	with	the	address	of	a
local	temporary	queue.	When	the	recipient	receives	the	message	they	process	it	then	send	back	a	response	to	the	address	specified
in	the	reply-to.	A	common	mistake	made	with	this	pattern	is	to	create	a	new	temporary	queue	on	each	message	sent.	This	will
drastically	reduce	performance.	Instead	the	temporary	queue	should	be	re-used	for	many	requests.

Don't	use	Message-Driven	Beans	for	the	sake	of	it.	As	soon	as	you	start	using	MDBs	you	are	greatly	increasing	the	codepath	for
each	message	received	compared	to	a	straightforward	message	consumer,	since	a	lot	of	extra	application	server	code	is	executed.
Ask	yourself	do	you	really	need	MDBs?	Can	you	accomplish	the	same	task	using	just	a	normal	message	consumer?

Troubleshooting

UDP	not	working

In	certain	situations	UDP	used	on	discovery	may	not	work.	Typical	situations	are:

1.	 The	nodes	are	behind	a	firewall.	If	your	nodes	are	on	different	machines	then	it	is	possible	that	the	firewall	is	blocking	the

Troubleshooting	and	Performance	Tuning

231

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html


multicasts.	you	can	test	this	by	disabling	the	firewall	for	each	node	or	adding	the	appropriate	rules.
2.	 You	are	using	a	home	network	or	are	behind	a	gateway.	Typically	home	networks	will	redirect	any	UDP	traffic	to	the	Internet

Service	Provider	which	is	then	either	dropped	by	the	ISP	or	just	lost.	To	fix	this	you	will	need	to	add	a	route	to	the
firewall/gateway	that	will	redirect	any	multicast	traffic	back	on	to	the	local	network	instead.

3.	 All	the	nodes	are	in	one	machine.	If	this	is	the	case	then	it	is	a	similar	problem	to	point	2	and	the	same	solution	should	fix	it.
Alternatively	you	could	add	a	multicast	route	to	the	loopback	interface.	On	linux	the	command	would	be:

#	you	should	run	this	as	root

route	add	-net	224.0.0.0	netmask	240.0.0.0	dev	lo

This	will	redirect	any	traffic	directed	to	the	224.0.0.0	to	the	loopback	interface.	This	will	also	work	if	you	have	no	network	at	all.

on	Mac	OS	X,	the	command	is	slightly	different:

sudo	route	add	224.0.0.0	127.0.0.1	-netmask	240.0.0.0

Troubleshooting	and	Performance	Tuning

232



Configuration	Reference
This	section	is	a	quick	index	for	looking	up	configuration.	Click	on	the	element	name	to	go	to	the	specific	chapter.

Server	Configuration

broker.xml

This	is	the	main	core	server	configuration	file	which	contains	to	elements	'core'	and	'jms'.	The	'core'	element	contains	the	main	server
configuration	while	the	'jms'	element	is	used	by	the	server	side	JMS	service	to	load	JMS	Queues,	Topics

System	properties
It	is	possible	to	use	System	properties	to	replace	some	of	the	configuration	properties.	If	you	define	a	System	property	starting	with
"brokerconfig."	that	will	be	passed	along	to	Bean	Utils	and	the	configuration	would	be	replaced.

To	define	global-max-size=1000000	using	a	system	property	you	would	have	to	define	this	property,	for	example	through	java
arguments:

java	-Dbrokerconfig.globalMaxSize=1000000

You	can	also	change	the	prefix	through	the	broker.xml	by	setting:

<system-property-prefix>yourprefix</system-property-prefix>

This	is	to	help	you	customize	artemis	on	embedded	systems.

The	core	configuration
This	describes	the	root	of	the	XML	configuration.	You	will	see	here	also	multiple	sub-types	listed.	For	example	on	the	main	config	you
will	have	bridges	and	at	the	list	of	bridge	type	we	will	describe	the	properties	for	that	configuration.

Name Description

acceptors a	list	of	remoting	acceptors

acceptors.acceptor Each	acceptor	is	composed	for	just	an	URL

address-settings a	list	of	address-setting

allow-failback Should	stop	backup	on	live	restart.	default	true

async-connection-
execution-enabled If	False	delivery	would	be	always	asynchronous.	default	true

bindings-directory The	folder	in	use	for	the	bindings	folder

bridges a	list	of	bridge

broadcast-groups a	list	of	broadcast-group

configuration-file-
refresh-period The	frequency	in	milliseconds	the	configuration	file	is	checked	for	changes	(default	5000)

Configuration	Reference

233



check-for-live-server Used	for	a	live	server	to	verify	if	there	are	other	nodes	with	the	same	ID	on	the	topology

cluster-connections a	list	of	cluster-connection

cluster-password Cluster	password.	It	applies	to	all	cluster	configurations.

cluster-user Cluster	username.	It	applies	to	all	cluster	configurations.

connection-ttl-
override

if	set,	this	will	override	how	long	(in	ms)	to	keep	a	connection	alive	without	receiving	a	ping.	-1	disables
this	setting.	Default	-1

connection-ttl-check-
period how	often	(in	ms)	to	check	connections	for	ttl	violation.	Default	2000

connectors.connector The	URL	for	the	connector.	This	is	a	list

create-bindings-dir true	means	that	the	server	will	create	the	bindings	directory	on	start	up.	Default=true

create-journal-dir true	means	that	the	journal	directory	will	be	created.	Default=true

discovery-groups a	list	of	discovery-group

disk-scan-period The	interval	where	the	disk	is	scanned	for	percentual	usage.	Default=5000	ms.

diverts a	list	of	diverts	to	use

global-max-size The	amount	in	bytes	before	all	addresses	are	considered	full

graceful-shutdown-
enabled true	means	that	graceful	shutdown	is	enabled.	Default=true

graceful-shutdown-
timeout Timeout	on	waitin	for	clients	to	disconnect	before	server	shutdown.	Default=-1

grouping-handler Message	Group	configuration

id-cache-size The	duplicate	detection	circular	cache	size.	Default=20000

jmx-domain the	JMX	domain	used	to	registered	MBeans	in	the	MBeanServer.	Default=org.apache.activemq

jmx-management-
enabled true	means	that	the	management	API	is	available	via	JMX.	Default=true

journal-buffer-size The	size	of	the	internal	buffer	on	the	journal	in	KB.	Default=490	KiB

journal-buffer-
timeout The	Flush	timeout	for	the	journal	buffer

journal-compact-
min-files

The	minimal	number	of	data	files	before	we	can	start	compacting.	Setting	this	to	0	means	compacting	is
disabled.	Default=10

journal-compact-
percentage The	percentage	of	live	data	on	which	we	consider	compacting	the	journal.	Default=30

journal-directory the	directory	to	store	the	journal	files	in.	Default=data/journal

journal-file-size the	size	(in	bytes)	of	each	journal	file.	Default=10485760	(10	MB)

journal-max-io the	maximum	number	of	write	requests	that	can	be	in	the	AIO	queue	at	any	one	time.	Default	is	500	for
AIO	and	1	for	NIO.

journal-min-files how	many	journal	files	to	pre-create.	Default=2

journal-pool-files The	upper	theshold	of	the	journal	file	pool,-1	(default)	means	no	Limit.	The	system	will	create	as	many
files	as	needed	however	when	reclaiming	files	it	will	shrink	back	to	the		journal-pool-files	

journal-sync-non-
transactional

if	true	wait	for	non	transaction	data	to	be	synced	to	the	journal	before	returning	response	to	client.
Default=true

journal-sync-
transactional

if	true	wait	for	transaction	data	to	be	synchronized	to	the	journal	before	returning	response	to	client.
Default=true

journal-type the	type	of	journal	to	use.	Default=ASYNCIO

Configuration	Reference

234



journal-datasync It	will	use	fsync	on	journal	operations.	Default=true.

large-messages-
directory the	directory	to	store	large	messages.	Default=data/largemessages

management-address the	name	of	the	management	address	to	send	management	messages	to.	It	is	prefixed	with	"jms.queue"
so	that	JMS	clients	can	send	messages	to	it.	Default=jms.queue.activemq.management

management-
notification-address

the	name	of	the	address	that	consumers	bind	to	receive	management	notifications.
Default=activemq.notifications

mask-password This	option	controls	whether	passwords	in	server	configuration	need	be	masked.	If	set	to	"true"	the
passwords	are	masked.	Default=false

max-saved-
replicated-journals-
size

This	specifies	how	many	times	a	replicated	backup	server	can	restart	after	moving	its	files	on	start.
Once	there	are	this	number	of	backup	journal	files	the	server	will	stop	permanently	after	if	fails	back.	-1
Means	no	Limit,	0	don't	keep	a	copy	at	all,	Default=2

max-disk-usage The	max	percentage	of	data	we	should	use	from	disks.	The	System	will	block	while	the	disk	is	full.
Default=100

memory-measure-
interval frequency	to	sample	JVM	memory	in	ms	(or	-1	to	disable	memory	sampling).	Default=-1

memory-warning-
threshold Percentage	of	available	memory	which	will	trigger	a	warning	log.	Default=25

message-counter-
enabled true	means	that	message	counters	are	enabled.	Default=false

message-counter-
max-day-history how	many	days	to	keep	message	counter	history.	Default=10	(days)

message-counter-
sample-period the	sample	period	(in	ms)	to	use	for	message	counters.	Default=10000

message-expiry-
scan-period how	often	(in	ms)	to	scan	for	expired	messages.	Default=30000

message-expiry-
thread-priority the	priority	of	the	thread	expiring	messages.	Default=3

page-max-
concurrent-io The	max	number	of	concurrent	reads	allowed	on	paging.	Default=5

paging-directory the	directory	to	store	paged	messages	in.	Default=data/paging

persist-delivery-
count-before-
delivery

True	means	that	the	delivery	count	is	persisted	before	delivery.	False	means	that	this	only	happens
after	a	message	has	been	cancelled.	Default=false

persistence-enabled true	means	that	the	server	will	use	the	file	based	journal	for	persistence.	Default=true

persist-id-cache true	means	that	ID's	are	persisted	to	the	journal.	Default=true

queues a	list	of	queue	to	be	created

remoting-incoming-
interceptors A	list	of	interceptor

resolveProtocols Use	ServiceLoader	to	load	protocol	modules.	Default=true

scheduled-thread-
pool-max-size Maximum	number	of	threads	to	use	for	the	scheduled	thread	pool.	Default=5

security-enabled true	means	that	security	is	enabled.	Default=true

security-
invalidation-interval how	long	(in	ms)	to	wait	before	invalidating	the	security	cache.	Default=10000

system-property-
prefix Prefix	for	replacing	configuration	settings	using	Bean	Utils.

populate-validated-

Configuration	Reference

235

http://docs.oracle.com/javase/tutorial/ext/basics/spi.html


user

security-settings a	list	of	security-setting

thread-pool-max-size Maximum	number	of	threads	to	use	for	the	thread	pool.	-1	means	'no	limits'..	Default=30

transaction-timeout how	long	(in	ms)	before	a	transaction	can	be	removed	from	the	resource	manager	after	create	time.
Default=300000

transaction-timeout-
scan-period how	often	(in	ms)	to	scan	for	timeout	transactions.	Default=1000

wild-card-routing-
enabled true	means	that	the	server	supports	wild	card	routing.	Default=true

network-check-NIC The	network	internet	card	to	be	used	on	InetAddress.isReacheable

network-check-URL The	list	of	http	URIs	to	be	used	to	validate	the	network

network-check-list The	list	of	pings	to	be	used	on	ping	or	InetAddress.isReacheable

network-check-ping-
command The	command	used	to	oping	IPV4	addresses

network-check-
ping6-command The	command	used	to	oping	IPV6	addresses

address-setting	type

Name Description

match The	filter	to	apply	to	the	setting

dead-letter-address dead	letter	address

expiry-address expired	messages	address

expiry-delay expiration	time	override,	-1	don't	override	with	default=-1

redelivery-delay time	to	redeliver	a	message	(in	ms)	with	default=0

redelivery-delay-multiplier multiplier	to	apply	to	the	"redelivery-delay"

max-redelivery-delay Max	value	for	the	redelivery-delay

max-delivery-attempts Number	of	retries	before	dead	letter	address,	default=10

max-size-bytes Limit	before	paging.	-1	=	infinite

page-size-bytes Size	of	each	file	on	page,	default=10485760

page-max-cache-size Maximum	number	of	files	cached	from	paging	default=5

address-full-policy Model	to	chose	after	queue	full

message-counter-history-day-limit Days	to	keep	in	history

last-value-queue Queue	is	a	last	value	queue,	default=false

redistribution-delay Timeout	before	redistributing	values	after	no	consumers.	default=-1

send-to-dla-on-no-route Forward	messages	to	DLA	when	no	queues	subscribing.	default=false

bridge	type

Name Description

Configuration	Reference

236



name unique	name

queue-name name	of	queue	that	this	bridge	consumes	from

forwarding-address address	to	forward	to.	If	omitted	original	address	is	used

ha whether	this	bridge	supports	fail-over

filter optional	core	filter	expression

transformer-class-name optional	name	of	transformer	class

min-large-message-size Limit	before	message	is	considered	large.	default	100KB

check-period TTL	check	period	for	the	bridge.	-1	means	disabled.	default	30000	(ms)

connection-ttl TTL	for	the	Bridge.	This	should	be	greater	than	the	ping	period.	default	60000	(ms)

retry-interval period	(in	ms)	between	successive	retries.	default	2000

retry-interval-multiplier multiplier	to	apply	to	successive	retry	intervals.	default	1

max-retry-interval Limit	to	the	retry-interval	growth.	default	2000

reconnect-attempts maximum	number	of	retry	attempts,	-1	means	'no	limits'.	default	-1

use-duplicate-detection forward	duplicate	detection	headers?.	default	true

confirmation-window-size number	of	bytes	before	confirmations	are	sent.	default	1MB

producer-window-size Producer	flow	control	size	on	the	bridge.	Default	-1	(disabled)

user Username	for	the	bridge,	the	default	is	the	cluster	username

password Password	for	the	bridge,	default	is	the	cluster	password

reconnect-attempts-same-node Number	of	retries	before	trying	another	node.	default	10

broadcast-group	type

Name Type

name unique	name

local-bind-address local	bind	address	that	the	datagram	socket	is	bound	to

local-bind-port local	port	to	which	the	datagram	socket	is	bound	to

group-address multicast	address	to	which	the	data	will	be	broadcast

group-port UDP	port	number	used	for	broadcasting

broadcast-period period	in	milliseconds	between	consecutive	broadcasts.	default	2000

jgroups-file Name	of	JGroups	configuration	file

jgroups-channel Name	of	JGroups	Channel

connector-ref

cluster-connection	type

Name Description

name unique	name

address name	of	the	address	this	cluster	connection	applies	to

Configuration	Reference

237

http://en.wikipedia.org/wiki/Time_to_live
http://en.wikipedia.org/wiki/Time_to_live


connector-ref Name	of	the	connector	reference	to	use.

check-period The	period	(in	milliseconds)	used	to	check	if	the	cluster	connection	has	failed	to	receive	pings	from
another	server	with	default	=	30000

connection-ttl Timeout	for	TTL.	Default	60000

min-large-message-
size Messages	larger	than	this	are	considered	large-messages,	default=100KB

call-timeout Time(ms)	before	giving	up	on	blocked	calls.	Default=30000

retry-interval period	(in	ms)	between	successive	retries.	Default=500

retry-interval-
multiplier multiplier	to	apply	to	the	retry-interval.	Default=1

max-retry-interval Maximum	value	for	retry-interval.	Default=2000

reconnect-attempts How	many	attempts	should	be	made	to	reconnect	after	failure.	Default=-1

use-duplicate-
detection should	duplicate	detection	headers	be	inserted	in	forwarded	messages?.	Default=true

message-load-
balancing how	should	messages	be	load	balanced?	Default=OFF

max-hops maximum	number	of	hops	cluster	topology	is	propagated.	Default=1

confirmation-
window-size

The	size	(in	bytes)	of	the	window	used	for	confirming	data	from	the	server	connected	to.	Default
1048576

producer-window-
size Flow	Control	for	the	Cluster	connection	bridge.	Default	-1	(disabled)

call-failover-
timeout How	long	to	wait	for	a	reply	if	in	the	middle	of	a	fail-over.	-1	means	wait	forever.	Default	-1

notification-
interval

how	often	the	cluster	connection	will	notify	the	cluster	of	its	existence	right	after	joining	the	cluster.
Default	1000

notification-
attempts

how	many	times	this	cluster	connection	will	notify	the	cluster	of	its	existence	right	after	joining	the
cluster	Default	2

discovery-group	type

Name Description

name unique	name

group-
address Multicast	IP	address	of	the	group	to	listen	on

group-port UDP	port	number	of	the	multi	cast	group

jgroups-file Name	of	a	JGroups	configuration	file.	If	specified,	the	server	uses	JGroups	for	discovery.

jgroups-
channel Name	of	a	JGroups	Channel.	If	specified,	the	server	uses	the	named	channel	for	discovery.

refresh-
timeout

Period	the	discovery	group	waits	after	receiving	the	last	broadcast	from	a	particular	server	before	removing	that
servers	connector	pair	entry	from	its	list.	Default=10000

local-bind-
address local	bind	address	that	the	datagram	socket	is	bound	to

local-bind-
port local	port	to	which	the	datagram	socket	is	bound	to.	Default=-1

initial-

Configuration	Reference

238



wait-
timeout

time	to	wait	for	an	initial	broadcast	to	give	us	at	least	one	node	in	the	cluster.	Default=10000

divert	type

Name Description

name unique	name

transformer-class-name an	optional	class	name	of	a	transformer

exclusive whether	this	is	an	exclusive	divert.	Default=false

routing-name the	routing	name	for	the	divert

address the	address	this	divert	will	divert	from

forwarding-address the	forwarding	address	for	the	divert

filter optional	core	filter	expression

queue	type

Name Description

name unique	name

address address	for	the	queue

filter optional	core	filter	expression

durable whether	the	queue	is	durable	(persistent).	Default=true

security-setting	type

Name Description

match address	expression

permission

permission.type the	type	of	permission

permission.roles a	comma-separated	list	of	roles	to	apply	the	permission	to

The	jms	configuration

Name Type Description

queue Queue a	queue

queue.name	(attribute) String unique	name	of	the	queue

queue.durable Boolean is	the	queue	durable?.	Default=true

queue.filter String optional	filter	expression	for	the	queue

topic Topic a	topic

Configuration	Reference

239



topic.name	(attribute) String unique	name	of	the	topic

Using	Masked	Passwords	in	Configuration	Files

By	default	all	passwords	in	Apache	ActiveMQ	Artemis	server's	configuration	files	are	in	plain	text	form.	This	usually	poses	no	security
issues	as	those	files	should	be	well	protected	from	unauthorized	accessing.	However,	in	some	circumstances	a	user	doesn't	want	to
expose	its	passwords	to	more	eyes	than	necessary.

Apache	ActiveMQ	Artemis	can	be	configured	to	use	'masked'	passwords	in	its	configuration	files.	A	masked	password	is	an	obscure
string	representation	of	a	real	password.	To	mask	a	password	a	user	will	use	an	'encoder'.	The	encoder	takes	in	the	real	password	and
outputs	the	masked	version.	A	user	can	then	replace	the	real	password	in	the	configuration	files	with	the	new	masked	password.	When
Apache	ActiveMQ	Artemis	loads	a	masked	password,	it	uses	a	suitable	'decoder'	to	decode	it	into	real	password.

Apache	ActiveMQ	Artemis	provides	a	default	password	encoder	and	decoder.	Optionally	users	can	use	or	implement	their	own	encoder
and	decoder	for	masking	the	passwords.

Password	Masking	in	Server	Configuration	File

The	password	masking	property

The	server	configuration	file	has	a	property	that	defines	the	default	masking	behaviors	over	the	entire	file	scope.

	mask-password	:	this	boolean	type	property	indicates	if	a	password	should	be	masked	or	not.	Set	it	to	"true"	if	you	want	your
passwords	masked.	The	default	value	is	"false".

Specific	masking	behaviors

cluster-password

The	nature	of	the	value	of	cluster-password	is	subject	to	the	value	of	property	'mask-password'.	If	it	is	true	the	cluster-password	is
masked.

Passwords	in	connectors	and	acceptors

In	the	server	configuration,	Connectors	and	Acceptors	sometimes	needs	to	specify	passwords.	For	example	if	a	users	wants	to	use	an
SSL-enabled	NettyAcceptor,	it	can	specify	a	key-store-password	and	a	trust-store-password.	Because	Acceptors	and	Connectors	are
pluggable	implementations,	each	transport	will	have	different	password	masking	needs.

When	a	Connector	or	Acceptor	configuration	is	initialised,	Apache	ActiveMQ	Artemis	will	add	the	"mask-password"	and	"password-
codec"	values	to	the	Connector	or	Acceptors	params	using	the	keys		activemq.usemaskedpassword		and		activemq.passwordcodec	
respectively.	The	Netty	and	InVM	implementations	will	use	these	as	needed	and	any	other	implementations	will	have	access	to	these	to
use	if	they	so	wish.

Passwords	in	Core	Bridge	configurations

Core	Bridges	are	configured	in	the	server	configuration	file	and	so	the	masking	of	its	'password'	properties	follows	the	same	rules	as	that
of	'cluster-password'.

Examples

The	following	table	summarizes	the	relations	among	the	above-mentioned	properties

mask-password cluster-password acceptor/connector	passwords bridge	password

absent plain	text plain	text plain	text

false plain	text plain	text plain	text

true masked masked masked

Configuration	Reference

240



Examples

Note:	In	the	following	examples	if	related	attributed	or	properties	are	absent,	it	means	they	are	not	specified	in	the	configure	file.

example	1

<cluster-password>bbc</cluster-password>

This	indicates	the	cluster	password	is	a	plain	text	value	("bbc").

example	2

<mask-password>true</mask-password>

<cluster-password>80cf731af62c290</cluster-password>

This	indicates	the	cluster	password	is	a	masked	value	and	Apache	ActiveMQ	Artemis	will	use	its	built-in	decoder	to	decode	it.	All	other
passwords	in	the	configuration	file,	Connectors,	Acceptors	and	Bridges,	will	also	use	masked	passwords.

JMS	Bridge	password	masking

The	JMS	Bridges	are	configured	and	deployed	as	separate	beans	so	they	need	separate	configuration	to	control	the	password	masking.	A
JMS	Bridge	has	two	password	parameters	in	its	constructor,	SourcePassword	and	TargetPassword.	It	uses	the	following	two	optional
properties	to	control	their	masking:

	useMaskedPassword		--	If	set	to	"true"	the	passwords	are	masked.	Default	is	false.

	passwordCodec		--	Class	name	and	its	parameters	for	the	Decoder	used	to	decode	the	masked	password.	Ignored	if		useMaskedPassword		is
false.	The	format	of	this	property	is	a	full	qualified	class	name	optionally	followed	by	key/value	pairs,	separated	by	semi-colons.	For
example:

<property	name="useMaskedPassword">true</property>

<property	name="passwordCodec">com.foo.FooDecoder;key=value</property>

Apache	ActiveMQ	Artemis	will	load	this	property	and	initialize	the	class	with	a	parameter	map	containing	the	"key"->"value"	pair.	If
	passwordCodec		is	not	specified,	the	built-in	decoder	is	used.

Masking	passwords	in	ActiveMQ	Artemis	ResourceAdapters	and	MDB	activation
configurations

Both	ra.xml	and	MDB	activation	configuration	have	a	'password'	property	that	can	be	masked.	They	are	controlled	by	the	following
two	optional	Resource	Adapter	properties	in	ra.xml:

	UseMaskedPassword		--	If	setting	to	"true"	the	passwords	are	masked.	Default	is	false.

	PasswordCodec		--	Class	name	and	its	parameters	for	the	Decoder	used	to	decode	the	masked	password.	Ignored	if	UseMaskedPassword
is	false.	The	format	of	this	property	is	a	full	qualified	class	name	optionally	followed	by	key/value	pairs.	It	is	the	same	format	as	that
for	JMS	Bridges.	Example:

<config-property>

		<config-property-name>UseMaskedPassword</config-property-name>

		<config-property-type>boolean</config-property-type>

		<config-property-value>true</config-property-value>

</config-property>

<config-property>

		<config-property-name>PasswordCodec</config-property-name>

		<config-property-type>java.lang.String</config-property-type>

		<config-property-value>com.foo.ADecoder;key=helloworld</config-property-value>

</config-property>

Configuration	Reference

241



With	this	configuration,	both	passwords	in	ra.xml	and	all	of	its	MDBs	will	have	to	be	in	masked	form.

Masking	passwords	in	artemis-users.properties

Apache	ActiveMQ	Artemis's	built-in	security	manager	uses	plain	properties	files	where	the	user	passwords	are	specified	in	hash	forms
by	default.

Please	use	Artemis	CLI	command	to	add	a	password.	For	example

				./artemis	user	add	--username	guest	--password	guest	--role	admin

Choosing	a	decoder	for	password	masking

As	described	in	the	previous	sections,	all	password	masking	requires	a	decoder.	A	decoder	uses	an	algorithm	to	convert	a	masked
password	into	its	original	clear	text	form	in	order	to	be	used	in	various	security	operations.	The	algorithm	used	for	decoding	must	match
that	for	encoding.	Otherwise	the	decoding	may	not	be	successful.

For	user's	convenience	Apache	ActiveMQ	Artemis	provides	a	default	built-in	Decoder.	However	a	user	can	if	they	so	wish	implement
their	own.

The	built-in	Decoder

Whenever	no	decoder	is	specified	in	the	configuration	file,	the	built-in	decoder	is	used.	The	class	name	for	the	built-in	decoder	is
org.apache.activemq.artemis.utils.DefaultSensitiveStringCodec.	It	has	both	encoding	and	decoding	capabilities.	It	uses
java.crypto.Cipher	utilities	to	encrypt	(encode)	a	plaintext	password	and	decrypt	a	mask	string	using	same	algorithm.	Using	this
decoder/encoder	is	pretty	straightforward.	To	get	a	mask	for	a	password,	just	run	the	main	class	at
org.apache.activemq.artemis.utils.DefaultSensitiveStringCodec.

An	easy	way	to	do	it	is	through	activemq-tools--jar-with-dependencies.jar	since	it	has	all	the	dependencies:

				java	-cp	artemis-tools-1.0.0-jar-with-dependencies.jar	org.apache.activemq.artemis.utils.DefaultSensitiveStringCodec	"your

	plaintext	password"

If	you	don't	want	to	use	the	jar-with-dependencies,	make	sure	the	classpath	is	correct.	You'll	get	something	like

				Encoded	password:	80cf731af62c290

Just	copy	"80cf731af62c290"	and	replace	your	plaintext	password	with	it.

Using	a	different	decoder

It	is	possible	to	use	a	different	decoder	rather	than	the	built-in	one.	Simply	make	sure	the	decoder	is	in	Apache	ActiveMQ	Artemis's
classpath	and	configure	the	server	to	use	it	as	follows:

				<password-codec>com.foo.SomeDecoder;key1=value1;key2=value2</password-codec>

If	your	decoder	needs	params	passed	to	it	you	can	do	this	via	key/value	pairs	when	configuring.	For	instance	if	your	decoder	needs	say	a
"key-location"	parameter,	you	can	define	like	so:

				<password-codec>com.foo.NewDecoder;key-location=/some/url/to/keyfile</password-codec>

Then	configure	your	cluster-password	like	this:

				<mask-password>true</mask-password>

				<cluster-password>masked_password</cluster-password>

Configuration	Reference

242



When	Apache	ActiveMQ	Artemis	reads	the	cluster-password	it	will	initialize	the	NewDecoder	and	use	it	to	decode	"mask_password".
It	also	process	all	passwords	using	the	new	defined	decoder.

Implementing	your	own	codecs

To	use	a	different	decoder	than	the	built-in	one,	you	either	pick	one	from	existing	libraries	or	you	implement	it	yourself.	All	decoders
must	implement	the		org.apache.activemq.artemis.utils.SensitiveDataCodec<T>		interface:

public	interface	SensitiveDataCodec<T>

{

			T	decode(Object	mask)	throws	Exception;

			void	init(Map<String,	String>	params);

}

This	is	a	generic	type	interface	but	normally	for	a	password	you	just	need	String	type.	So	a	new	decoder	would	be	defined	like

public	class	MyNewDecoder	implements	SensitiveDataCodec<String>

{

			public	String	decode(Object	mask)	throws	Exception

			{

						//decode	the	mask	into	clear	text	password

						return	"the	password";

			}

			public	void	init(Map<String,	String>	params)

			{

						//initialization	done	here.	It	is	called	right	after	the	decoder	has	been	created.

			}

}

Last	but	not	least,	once	you	get	your	own	decoder,	please	add	it	to	the	classpath.	Otherwise	Apache	ActiveMQ	Artemis	will	fail	to	load
it!

Configuration	Reference

243


	Introduction
	Legal Notice
	Preface
	Project Info
	Messaging Concepts
	Architecture
	Using the Server
	Using JMS
	Using Core
	Mapping JMS Concepts to the Core API
	The Client Classpath
	Examples
	Routing Messages With Wild Cards
	Understanding the Apache ActiveMQ Artemis Wildcard Syntax
	Filter Expressions
	Persistence
	Configuring Transports
	Configuration Reload
	Detecting Dead Connections
	Detecting Slow Consumers
	Avoiding Network Isolation
	Resource Manager Configuration
	Flow Control
	Guarantees of sends and commits
	Message Redelivery and Undelivered Messages
	Message Expiry
	Large Messages
	Paging
	Queue Attributes
	Scheduled Messages
	Last-Value Queues
	Message Grouping
	Extra Acknowledge Modes
	Management
	Security
	Resource Limits
	The JMS Bridge
	Client Reconnection and Session Reattachment
	Diverting and Splitting Message Flows
	Core Bridges
	Duplicate Message Detection
	Clusters
	High Availability and Failover
	Graceful Server Shutdown
	Libaio Native Libraries
	Thread management
	Logging
	REST Interface
	Embedding Apache ActiveMQ Artemis
	Apache Karaf
	Spring Integration
	AeroGear Integration
	VertX Integration
	CDI Integration
	Intercepting Operations
	Protocols and Interoperability
	Tools
	Maven Plugin
	Unit Testing
	Troubleshooting and Performance Tuning
	Configuration Reference

